• Title/Summary/Keyword: ND:YAG laser

Search Result 1,019, Processing Time 0.032 seconds

Variation of Structural and Optical Properties of ZnO Nanorods with Growing Time (성장시간에 따른 ZnO 나노로드의 구조적 및 광학적 특성 변화)

  • Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.841-846
    • /
    • 2016
  • ZnO nanorods were grown on $SiO_2$ coated Si wafers and glass by the hydrothermal method. The structural and optical properties variation of ZnO nanorods as a function of growing time was studied. ~10 nm-thick ZnO thin films deposited on substrates by rf magnetron sputtering were employed as seed layers. Zinc nitrate hexahydrate (0.05 M) and hexamethylenetetramine (0.05 M) mixed in DI water were used as a reaction solution. ZnO nanorods were respectively grown for 30 min, 1 h, 2 h, 3 h, and 4 h by maintaining the reactor at $90^{\circ}C$. Crystallinity of ZnO nanorods was analyzed by X-ray diffraction, and the morphology of nanorods was observed by a field emission scanning electron microscope. Transmittance and absorbance were measured by a UV-Vis spectrophotometer, and energy band gap and urbach energy were obtained from the data. Photoluminescence measurements were carried out using Nd-Yag laser (266 nm).

A New Hybrid Volume PTV (하이브리드 볼륨 PTV(VPTV))

  • Doh, D.H.;Jo, H.J.;Cho, K.R.;Moon, K.R.;Lee, J.M.;Hwang, T.G.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2444-2447
    • /
    • 2008
  • A new 3D-PTV algorithm (a Volume PTV) based upon a hybrid fitness function has been constructed. A coherency fitness function is introduced using the information of space and time to sort out the correct particle pairs between the two camera images. The measurement system consists of two-high-definition-cameras($1k{\times}1k$), a Nd-Yag laser and a host computer. The developed algorithm has been employed to investigate the flow features of the cylinder wake. The Reynolds numbers with the cylinder diameter (d=10mm) are 360, 720, 900 and 1260. Two-dimensional displacements of the particles of each camera's image and neighbouring constraints were introduced to reduce the calculation loads. More than 10,000 instantaneous 3D vectors have been obtained by the constructed algorithm. The constructed algorithm could recover more than $80{\sim}90%$ of the particle numbers in the image.

  • PDF

Bronchoscopic Intervention for Airway Disease (기도질환 환자의 치료기관지경술)

  • Kim, Ho-Joong
    • Korean Journal of Bronchoesophagology
    • /
    • v.14 no.2
    • /
    • pp.10-16
    • /
    • 2008
  • Surgical resection and reanastomosis has been the treatment of choice in patients with tracheobronchial stenosis. Recent development of bronchoscopic intervention has been replacing the role of surgery in these patients. After summarizing the upto date data of bronchoscopic intervention, the proper management of tracheobronchial stenosis will be presented. Bronchoscopic intervention would be much effective when performed under rigid bron- choscopy, due to the stable patients' condition and endoscopic view. The usual method of intervention includes ballooning, Nd-YAG laser resection, bougienation, mechanical airway dilatation, stenting and photodynamic therapy. Silicone stents are very effective in patients with tracheobronchial stenosis to maintain airway patency. Bronchoscopic intervention provided immediate symptomatic relief and improved lung function in most of patients. After airway stabilization, stents were removed successfully in 2/3 of the patients at a 12-18 months post-insertion. Less than 5% of patients eventually needs surgical management. Acute complications, including excessive bleeding, pneumothorax, and pneumomediastinum develops in less than 5% of patients but managed without mortality. Stent-related late complications, such as, migration, granuloma formation, mucostasis, and restenosis are relatively high but usually controlled by follow-up bronchoscopy. In conclusion, bronchoscopic intervention, including silicone stenting could be a useful and safe method for treating tracheobronchial stenosis.

  • PDF

Flow Characteristics of Neutrally Buoyant Particles in 2-Dimensional Poiseuille Flow through Circular Capillaries

  • Kim, Young-Won;Jin, Song-Wan;Yoo, Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.7-10
    • /
    • 2006
  • An experimental study has been conducted to quantitatively characterize the motion of neutrally buoyant particles in 2-dimensional Poiseuille flow through the micron-sized circular capillaries in the range of Re (Reynolds number) $\approx0.1\sim100$. $A{\mu}-PTV$ (Particle Tracking Velocimetry) system is adopted, which consists of a double-headed Nd:YAG laser, an epi-fluorescence microscope and a cooled CCD camera. Since high shear rate can be induced due to the scale effect even at low Re, it is shown that in micro scale neutrally buoyant particles in Poiseuille flow drift away from the wall and away from the center of the capillary. Consequently, particles accumulate at the equilibrium position of $0.52\sim0.64R$ with R being the radius of the capillary, which is analogous to that of tube flow in macro scale. There is a plateau in equilibrium position at small Re, while equilibrium position starts increasing at $Re\approx30$. The outermost edge of particle cluster is closer to the center of the capillary than that in previous studies due to low Re effect. The present study quantitatively presents characteristics of particle motion in circular capillaries. Furthermore, it is expected to give optimum factors for designing microfluidic systems that are to be used fur plasma separation from the blood.

  • PDF

Effect of hematocrit on hemorheological characteristics of blood flow in a microtube (헤마토크릿에 따른 혈액의 유변학적 특성 변화)

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.111-112
    • /
    • 2006
  • In order to investigate flow characteristics of blood flow in a micro tube ($100{\mu}m$ in diameter) according to hematocrit, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, a 2 head Nd:YAG laser, a 12 bit cooled CCD camera and a delay generator. Blood was supplied into the micro tube using a syringe pump. Hematocrit of blood was controlled to be 20%, 30% and 40%. The blood flow has a cell free layer near the tube wall and its thickness was changed with increasing the flow rate and hematocrit. The hemorheological characteristics such as shear rate and viscosity were evaluated using the velocity field data measured. As the flow rate increased, the blunt velocity profile in the tube center was sharpened. The viscosity of blood was rapidly increased with decreasing shear rate, especially in the region of low shear rate, changing RBC rheological properties. The variation of velocity profile and blood viscosity shows typical characteristics of Non-Newtonian fluids. On the basis of inflection points, the cell free layer and two-phase flow consisting of plasma and suspensions including RBCs were clearly discriminated.

  • PDF

Fabrication of High Tunable BST Thin Film Capacitors using Pulsed Laser Deposition (펄스 레이저 증착법에 의한 BST 박막 가변 Capacitors 제작)

  • Kim, Sung-Su;Song, Sang-Woo;Roh, Ji-Hyoung;Kim, Ji-Hong;Koh, Jung-Hyuk;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.79-79
    • /
    • 2008
  • We report the growth of $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thin films and their substrate-dependent electrical characteristics. BST thin films were deposited on alumina(non-single crystal), $Al_2O_3$(100) substrates by Nd:YAG Pulsed Laser Deposition(PLD) with a 355nm wavelength at substrate temperature of $700^{\circ}C$ and post-deposition annealing at $750^{\circ}C$ in flowing $O_2$ atmosphere for 1hours. BST materials had been chosen due to high dielectric permittivity and tunability for high frequency applications, To analyze the oxygen partial pressure effects, deposited films at 1, 10, 50, 100, 150, 200, 300 mTorr. The effects of oxygen pressure on structural properties of the deposited films have been investigated by X-ray diffraction(XRD) and atomic force microscope(AFM), respectively. Then we manufactured a inter-digital capacitor(IDC) patterns twenty fingers and $10{\mu}m$ gap, $700{\mu}m$ length and electrical properties were characterized. The results provide a basis for understanding the growth mechanisms and basic structural and electrical properties of BST thin films as required for tunable microwave devices applications such as varactors and tunable filters.

  • PDF

An Experimental Analysis on the Spray Structure of Multi-component Fuels Using Magnification Photograph and Mie Scattering Images (확대촬영법 및 Mie 산란광법을 이용한 다성분연료의 분무구조에 관한 실험적 해명)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.707-716
    • /
    • 2008
  • The objective of this study was to analyze the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the variant ambient conditions. Spray structure and spatial distribution of liquid phase concentration were investigated using a thin laser sheet illumination technique on the three component mixed fuels. A pulsed Nd:YAG laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contains i-octane($C_8H_{18}$), n-dodecane($C_{12}H_{26}$) and n-hexadecane($C_{16}H_{34}$) that were selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 42 MPa, 72 MPa and 112 MPa in injection pressure, $5\;kg/m^3$, $15kg/m^3$ and $30kg/m^3$ in ambient gas density, 300 K, 500 K, 600 K and 700 K in ambient gas temperature, 300 K and 368 K in fuel temperature and different fuel mass fraction. Experimental results indicated that the multi-component fuels made two phase region mixed vapor and liquid so that it would are helpful to improve combustion, for the fuels of high boiling point component could accelerate evaporation very much according as low boiling point fuel was added to high boiling point fuel.

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution

  • Fatoba, O.S.;Popoola, A.P.I.;Fedotova, T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.

고성능 투명박막트랜지스터 Source/Drain용 AZO박막 특성연구

  • Park, On-Jeon;No, Ji-Hyeong;Park, Jae-Ho;Sin, Ju-Hong;Jo, Seul-Gi;Yeo, In-Hyeong;Mun, Byeong-Mu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.357-357
    • /
    • 2012
  • 박막트랜지스터의 전극으로 Au, Ag, Mo, ITO와 같은 물질들이 이미 많이 연구되어 왔으며, 투명 Source/Drain 전극을 활용한 물질로는 ITO에 초점이 맞춰져 왔다. 하지만 ITO의 높은 가격과 Indium의 인체 유해한 독성 때문에 ITO를 대체하는 물질에 대해 많은 연구가 진행되고 있다. 그 중 Al이 도핑된 ZnO (AZO) 는 가시광 영역에서 85% 이상의 높은 투과율과 높은 전도성, 낮은 비저항으로 다양한 광전소자의 전극과 윈도우 물질로 많은 응용 가능성을 보여주고 있다. 본 실험에서는 고 품질의 박막성장이 가능하고, 박막의 두께를 세밀하게 조절할 수 있는 Pulsed Laser Deposition (PLD) 을 이용하여 온도변화에 따라 AZO 박막을 성장시키고 구조적, 전기적, 광학적 특성을 조사하였다. 또한 온도변화가 AZO 박막 특성에 미치는 영향을 분석하여 Source/Drain 전극으로 사용하기 위한 조건을 최적화하였고, 실제 투명박막트랜지스터 제작을 통해 소자의 I-V Curve 와 Transfer 특성을 확인하고, Transfer Length Method 방법을 이용하여 투명박막트랜지스터의 접촉저항, 채널 비저항 등을 확인해 보았다. 소결된 타겟으로는 99.99%의 순도를 갖는 ZnO-$Al_2O_3$ (98:2 wt%) 타겟을 이용하였으며, 장비조건으로는 355 nm의 파장대역을 갖는 Nd:YAG 레이저를 사용하였고, 실험변수로는 온도범위 RT, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$에서 실험을 진행하였다. AZO 박막의 구조적, 전기적 특성을 분석하기 위해 각각 X-Ray Diffraction (XRD), Hall measurement 장비를 사용하였으며, 광학적 특성을 분석하기 위한 투과도의 측정은 UV-Visible spectrophotometer 장비를 사용하였다.

  • PDF

Study of Nano-scale Fullerene (C60) Clusters Formed in Micro-sized Droplet by UV Irradiation

  • Yeo, Seung-Jun;Ahn, Jeung-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.571-571
    • /
    • 2012
  • We discovered the formation of C60 aggregates in solution by means of photoluminescence spectroscopic study on C60 in solutions. From the in-depth investigation of temperature dependence of the luminescence of C60 in toluene, benzene and CS2 solutions, we reported that the C60 aggregates are formed during cooling at the freezing temperature of these solvents. Furthermore, the C60 aggregates can be changed to stable structures by irradiating with UV pulse-laser (Nd:YAG laser, 355nm). As a consequence, we could obtain nano-scale photo-polymerized C60 clusters, which appear as round-shaped nano- scale particles in high resolution transmission electron-microscopy (HRTEM) images. However, the yield of the nano-scale C60 clusters obtained by this method is too small. So we designed and developed a system to obtain C60 cluster of macroscopic quantity by using ultrasonic nebulizer. In this system, C60 solution was vaporized to several micro-sized droplets in vacuum, resulting in the formation of C60 aggregates by evaporating solvent (toluene). The system was invented to produce nano-scale carbon clusters by the irradiation of UV light upon C60 aggregates in vacuum. We have characterized the products, C60 cluster, obtained from the system by using UV absorption spectra and HPLC spectra. Although the products have a possibility of inclusion various forms of C60 cluster, results support that the product formed from the system by using vaporizer method establishes a new method to obtain C60 cluster in macroscopic quantity. In the presentation, the details of the system and the results of characterization are reported.

  • PDF