• Title/Summary/Keyword: NCI-H292

Search Result 69, Processing Time 0.021 seconds

Effect of Geonpye-tang(GPT) on Production and Gene Expression of Respiratory Mucin (건폐탕(健肺陽)이 호흡기 뮤신의 생성 및 유전자 발현에 미치는 영향)

  • Jung, Byeong-Jin;Kim, Ho;Seo, Un-Kyo
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.685-695
    • /
    • 2009
  • Objectives : In this study, the author tried to investigate whether Geonpye-tang(GPT) significantly affects PMA-, EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells. Materials and Methods : Effects of the agent on PMA-, EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of GPT and treated with PMA (10ng/ml) or EGF (25ng/ml) or TNF-alpha (0.2nM), to assess both effect of the agent on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicity of the agent was assessed by examining the rate of survival and proliferation of NCI-H292 cells after treatment with the agent over 72 hrs (SRB assay). Results : (1) GPT significantly inhibited PMA-induced and EGF-induced MUC5AC mucin production from NCI-H292 cells. However, GPT did not affect TNF-alpha-induced MUC5AC mucin production. (2) GPT significantly inhibited the expression levels of PMA-, EGF- or TNF-alpha-induced MUC5AC genes in NCI-H292 cells (3) GPT did not show significant cytotoxicity to NCI-H292 cells. Conclusion : This result suggests that GPT can affect the production and gene expression of respiratory mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion. This can explain the traditional use of GPT in oriental medicine. Effects of GPT with their components should be further investigated using animal experimental models that reflect pathophysiology of airway diseases through future studies.

  • PDF

Effects of Seonbangpaedok-tang and Sigyeongcheongpye-tang on PMA-induced Production of Airway Mucin and Expression of MUC5AC (선방패독탕(仙方敗毒湯)과 시경청폐탕(柴梗淸肺湯)이 NCI-H292 세포에서 PMA로 유발된 기도뮤신의 생성과 MUC5AC 발현에 미치는 영향)

  • Nam, Tae-Heung;Park, Yang-Chun
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.123-132
    • /
    • 2008
  • Objective: In this study, the author tried to investigate whether revised Seonbangpaedok-tang (SPT) and Sigyeongcheongpye-tang (SCT) significantly effects both PMA-induced mucin production and MUC5AC gene expression from airway epithelial cells. Objective: In this study, the author tried to investigate whether revised Seonbangpaedok-tang (SPT) and Sigyeongcheongpye-tang (SCT) significantly affects both PMA-induced mucin production and MUC5AC gene expression from airway epithelial cells. Materials and Methods: Confluent NCI-H292 cells were pretreated for 30 min in the presence of SPT and SCT and treated with PMA (10 ng/$m{\ell}$), to assess the effects of the agents on PMA-induced mucin production by enzyme-linked immunosorbent assay (ELISA). Also, the effects of the agents on PMA-induced MUC5AC gene expression from the same cells were investigated. Possible cytotoxicities of the agent were assessed by measuring the rate of survival and proliferation of NCI-H292 cells after treatment of agents during 48 hrs. Results: (1) SPT and SCT did not show significant cytotoxicity to NCI-H292 cells; (2) SPT significantly inhibitedthe expression levels of PMA-induced MUC5AC gene in NCI-H292 cells. SCT slightly decreased the expression levels of PMA-induced MUC5AC gene; (3) SPT significantly decreased PMA-induced mucin production from NCI-H292 cells. However, SCT did not affect mucin production. Conclusion: Theseresults suggest that SPT can not only affect the production of mucin but also the expression of the mucin gene and this explains the traditional use of SPT in oriental medicine. The effects of SPT and SCT with their components should be further investigated using animal experimental models that reflect pathophysiology of airway diseases via ongoing studies.

  • PDF

Growth Factor- and Phorbol Ester-induced Production and Gene Expression of MUC5AC Mucin in Human Airway Epithelial NCI-H292 Cells Were Inhibited by Afzelin and Natural Products Derived from Houttuynia Cordata

  • Kim, Yu-jin;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.248-254
    • /
    • 2019
  • In the present study, we investigated whether quercitrin, quercetin and afzelin derived from Houttuynia cordata affect the production and gene expression of MUC5AC mucin from airway epithelial cells. Confluent NCI-H292 cells were pretreated with quercitrin, quercetin or afzelin for 30 min and then stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA) for 24 h. The MUC5AC mucin gene expression and production were measured by RT-PCR and ELISA, respectively. The results were as follows: (1) Quercitrin, quercetin and afzelin inhibited EGF- and PMA-induced MUC5AC mucin production from NCI-H292 cells; (2) The three natural products also decreased EGF- and PMA-induced MUC5AC mucin gene expression in NCI-H292 cells. These results suggest that quercitrin, quercetin and afzelin showed the regulatory effect on the steps of gene expression and production of mucin, by directly acting on airway epithelial cells.

Effects of Cynaroside, Cynarin and Linarin on Secretion, Production and Gene Expression of Airway MUC5AC Mucin in NCI-H292 Cells

  • Yoon, Yong Pill;Lee, Hyun Jae;Kim, Young Ho;Luyen, Bui Thi Thuy;Hong, Jang-Hee;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2015
  • In this study, we investigated whether cynaroside, cynarin and linarin derived from Chrysanthemum indicum L. affect the secretion, production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with cynaroside, cynarin or linarin for 30 min and then stimulated with PMA (phorbol 12-myristate 13-acetate) for 24 h. The MUC5AC mucin gene expression, mucin protein production and secretion were measured by RT-PCR and ELISA, respectively. Effect of linarin on EGF (epidermal growth factor) - or TNF-${\alpha}$ (tumor necrosis factor-${\alpha}$)-induced MUC5AC mucin gene expression and mucin protein production was also examined. The results were as follows: (1) Cynaroside and cynarin did not significantly affect PMA-induced MUC5AC mucin secretion from NCI-H292 cells. However, linarin decreased MUC5AC mucin secretion; (2) Cynaroside did not affect PMA-induced MUC5AC mucin production and gene expresion from NCI-H292 cells. However, cynarin and linarin inhibited the production and gene expression of MUC5AC mucin; (3) Linarin also inhibited the production and gene expression of MUC5AC mucin induced by EGF- or TNF-${\alpha}$ from NCI-H292 cells. These results suggest that linarin can regulate the gene expression, production and secretion of mucin, by directly acting on airway epithelial cells.

Effects of Gamijinhae-tang and Socheongryong-tang-ga-seokgo on PMA- induced Production of Airway Mucin and Expression of Airway MUC5AC Gene (가미진해탕(加味鎭咳湯)과 소청룡탕가석고(小靑龍湯加石膏)가 PMA로 유발된 기도뮤신의 생성 및 MUC5AC gene 발현에 미치는 영향)

  • Byun, Jun-Seop;Park, Yang-Chun;Yang, Su-Young;An, Joung-Jo;Park, So-Ae
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.765-777
    • /
    • 2008
  • Objectives : In this study, the author tried to examine whether Gamijinhae-tang and Socheongryong-tang-ga-seokgo significantly affect both PMA-induced mucin production and MUC5AC gene expression from airway epithelial cells. Materials and Methods : Confluent NCI-H292 cells were pretreated for 30 min in the presence of JHT and STS and treated with PMA (10ng/ml), to assess the effects of the agents on PMA-induced mucin production by enzyme-linked immunosorbent assay (ELISA). Also, the effects of the agents on PMA-induced MUC5AC gene expression from the same cells were investigated. Possible cytotoxicities of the agent were assessed by examining the rate of survival and proliferation of NCI-H292 cells after treatment of agents during 48 hrs. Results : (1) JHT and STS did not show significant cytotoxicity to NCI-H292 cells. (2) JHT significantly decreased PMA-induced mucin production from NCI-H292 cells. However. STS did not affect mucin production. (3) JHT significantly inhibit the expression levels of PMA-induced MUC5AC gene in NCI-H292 cells. STS slightly decreased the expression levels of PMA-induced MUC5AC gene. Conclusion : These results suggest that JHT can not only affect the production of mucin but also affect the expression of the mucin gene, and this explains the traditional use of JHT in oriental medicine. The effects of JHT and STS with their components should be further investigated using animal experimental models that simulate pathophysiology of airway diseases through future studies.

  • PDF

Effects of Gamijinhae-tang (Jiaweizhenke-tang) on Tracheal Smooth Muscle Contraction and Mucin Secretion from Airway Epithelial Cells (가미진해탕(加味鎭咳湯)이 호흡기 점액의 mucin분비에 미치는 영향)

  • Kim, Young-Ho;Joo, Ye-Jin;Jung, Hye-Mi;Seo, Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.63-75
    • /
    • 2008
  • Objectives: In the present study, the author intended to investigate whether Gamijinhae-tang (Jiaweizhenke-tang) (GJHT) significantly affects both contractility of tracheal smooth muscle and mucin secretion from airway epithelial cells. Materials and Methods: Effect of GJHT on contractility of isolated tracheal smooth muscle of rabbit was investigated. Confluent hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of GJHT to assess the effect of the agent on 3H-mucin secretion. At the same time, confluent NCI-H292 cells were chased for 30 min in the presence of GJHT to assess the effect of the agent on MUC5AC secretion by ELISA. Total elution profiles of control spent media and treatment sample (radioactive mucin) through Sepharose CL-4B column were analyzed. Also, effect of the agent on MUC5AC gene expression in cultured NCI-H292 cells was investigated. Possible cytotoxicities of the agent were assessed by measuring both lactate dehydrogenase (LDH) release from HTSE cells and examining the rate of survival and proliferation of NCI-H292 cells. Results: (1) GJHT inhibited Ach-induced contraction of isolated tracheal smooth muscle; (2) GJHT significantly increased mucin secretion from cultured HTSE cells. However, it did not affect MUC5AC secretion from NCI-H292 cells, only chiefly affecting the 'mucin' secretion; (3) GJHT did not significantly affect the expression levels of MUC5AC gene in cultured NCI-H292 cells; (4) GJHT did not significantly inhibit the survival and proliferation of NCI-H292 cells. However, it slightly increased LDH release from HTSE cells. Conclusion: The author suggests that effects of GJHT with their components should be further investigated and it is valuable to find, from oriental medical prescriptions, novel agents which might regulate mucin secretion from airway epithelial cells.

  • PDF

Effect of Jaeumganghwa-tang on Production and Secretion of Respiratory Mucus (자음강화탕(滋陰降火湯)이 호흡기 점액의 생성 및 분비에 미치는 영향)

  • Cheon, Jin Hong;Min, Sang Yoen;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.31-46
    • /
    • 2016
  • Objectives In this study, the effects of Ja-eum-gang-hwa-tang (JGT) on the increase in airway epithelial mucosubstances of rats and ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Materials and Methods Hypersecretion of airway mucus was produced by exposure of $SO_2$ to rats for 3 weeks. The effect of orally-administered JGT for 2 weeks on increased epithelial mucosubstances from tracheal goblet cells of rats was assessed by using histopathological analysis after staining the epithelial tissue with Hematoxylin-eosin and PAS-alcian blue. Possible cytotoxicity of JGT was assessed by investigating the potential damage on kidneys and liver functions by measuring serum GOT/GPT activities and serum BUN concentration of rats and the body weight gain during experiment. Also, the effect of JGT on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of JGT and treated with ATP ($200{\mu}M$) or PMA ($10ng/ml$) or EGF ($25ng/ml$) or TNF-${\alpha}$ (0.2 nM) for 24 hrs to assess the effect of JGT both on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results (1) JGT decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) JGT did not show any renal and hepatic toxicities, and did not affect body weights either. (3) JGT significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) JGT inhibited EGF-, and PMA-induced expression levels of MUC5AC gene in NCI-H292 cells. However, ATP- and TNF-${\alpha}$-induced MUC5AC gene expression levels were not affected in NCI-H292 cells. Conclusions The result from the present study suggests that JGT might control the production and gene expression of airway mucin observed in various respiratory diseases which accompanied by mucus hypersecretion. Also, JGT did not show liver toxicity or impact on kidney functions. The effect of JGT should be further studied by using animal experimental models which can show proper pathophysiology of airway diseases.

Effect of Naenghyo-hwan on Secretion of Airway Mucin and Contractility of Tracheal Smooth Muscle (냉효환(冷哮丸)이 호흡기 뮤신 분비와 기관지 평활근에 미치는 영향)

  • Yoon, Jong-Man;Lee, Yong-Koo;Park, Yang-Chun
    • The Journal of Korean Medicine
    • /
    • v.28 no.2 s.70
    • /
    • pp.54-65
    • /
    • 2007
  • Objectives : In the present study, the author investigated whether Naenghyo-hwan(NHH) significantly affect mucin secretion from airway epithelial cells. Methods : Confluent hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of NHH to assess the effect of the agent on 3H-mucin secretion. Total elutionprofiles of control spent media and treatment sample through Sepharose CL-4B column were analysed. Effect of NHH on contractility of isolated tracheal smooth muscle was investigated. Also, effect of the agent on MUC5AC gene expression in cultured NCI-H292cells was investigated. Possible cytotoxicities of the agent were assessed by measuring both lactate dehydrogenase (LDH) release from HTSE cells and examining the rate of survival and proliferation of NCI-H292 cells. Results : NHH significantly increased mucin secretion from cultured HTSE cells, with significant cytotoxicity. NHH chiefly affected the 'mucin' secretion. NHH inhibited ACh-induced contraction of isolated tracheal smooth muscle. NHH disturbed both the extraction of total RNA from NCI-H292 cells and polymerase chain reaction, nonspecifically. Therefore, in this experiment, theeffect of NHH on the expression levels of MUC 5AC gene in cultured NCI-H292 cells could not be elucidated. Conclusions : The author suggests that the effect of NHH with their components should be further investigated and it is valuable to find, from oriental medical prescriptions, novel agents which might regulate mucin secretion from airway epithelial cells.

  • PDF

Pyunkang-hwan (Pyunkang-tang) Regulates Hypersecretion of Pulmonary Mucin from Rats with Sulfur Dioxide-Induced Bronchitis and Production and Gene Expression of MUC5AC Mucin from Human Airway Epithelial Cells

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • Pyunkang-hwan (Pyunkang-tang) extract (PGT) is a traditional folk medicine for controlling diverse pulmonary diseases including bronchitis, tonsiltis and pneumonitis. We investigated whether PGT significantly affects secretion, production and gene expression of airway mucin using in vivo and in vitro experimental models reflecting the hypersecretion and/or hyperproduction of mucus observed in inflammatory pulmonary diseases. For in vivo experiment, effect of PGT was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. For in vitro experiment, confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) or TNF-${\alpha}$ (tumor necrosis factor-${\alpha}$) for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) PGT inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-${\alpha}$ from NCI-H292 cells, respectively; (2) PGT also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells, respectively; (3) PGT inhibited secretion of mucin in sulfur dioxide-induced bronchitis rat model. This result suggests that PGT can regulate secretion, production and gene expression of airway mucin.

Effects of Inhibiting Glycoprotein MUC5AC by Seaweed Ecklonia cava Extract in human Airway Epithelial Cells

  • Lee, Sung-Gyu;Kwon, Sang-Oh
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.334-339
    • /
    • 2021
  • In the present study, antioxidant and MUC5AC mucin inhibition activities were measured in Ecklonia cava (E. cava) extract. The E. cava extract showed the total polyphenol and flavonoid contents of 607.40±19.44 ㎍ GAE/mg and 13.33±5.28 ㎍ QE/mg, respectively. The free radical scavenging activity of E. cava extract was high in the DPPH radical scavenging activity (RC50 7.08 ㎍/mL) and ABTS+ radical scavenging activity (RC50 4.74 ㎍/mL). Also, we investigated whether E. cava extract affects airway MUC5AC mucin gene expression, production and secretion induced by phorbol 12-myristate 13-acetate (PMA) from NCI-H292 cells. Cells were treated with E. cava extract and then stimulated with PMA for 24 h. The E. cava extract inhibited the gene expression of MUC5AC mucin from NCI-H292 cells. This result suggests that E. cava extract can inhibit the gene expression of mucin induced by PMA through directly acting on airway epithelial cells.