• Title/Summary/Keyword: NC-code

Search Result 147, Processing Time 0.025 seconds

A unified rough and finish cut algorithm for NC machining of free form pockets with general polygon - Part 1. Simulation (일반적인 내벽을 가진 자유바닥 곡면 파켓의 NC 가공을 위한 단일화된 황삭과 정삭 알고리즘 - Part 1. Simulation)

  • Park, Yong-hoon;Cho, Chi-woon;Kim, Sang-jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 2004
  • The tool path needs to be determined in an efficient manner to generate the final NC (numerical control) code for efficient machining. This is particularly important in machining free form pockets with an arbitrary wall geometry on a three-axis CNC machine. Many CAD/CAM systems use linear interpolation to generate NC tool paths for curved surfaces. However, this needs to be modified to improve the smoothness of the machined bottom surface, reduce machining time and CL (cutter location) file size. Curved machining can be a solution to reduce these problems. The unified rough and finish cut algerian and the tool motion is graphically simulated. In this paper, a grid based 3D navigation algorithm for generating NC tool path data for both linear interpolation and a combination of linear and circular interpolation for three-axis CNC milling of general pockets with sculptured bottom surfaces is developed.

  • PDF

Turning Machining Optimization using Software Based on Cutting Force Model (절삭력 모델 기반의 소프트웨어를 이용한 선삭가공최적화)

  • Ahn, Kwang-Woo;Jeon, Eon-Chan;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Increased productivity and cost reduction have emerged as the main goals of the industry due to the development of the machinery industry, and mechanical materials with excellent properties with the development of the machine tool industry are widely used in machine parts or structures. In addition, the cutting process of production plays a pivotal role in the production technology. Studies on cutting have involved a lot of research on the material, the cutting tool, the processing conditions, and numerical analysis. Due to the development of the computer through numerical analysis, cutting conditions, the assessment of cutting performance, and cutting quality could be predicted. This research uses the creation of the material model and AdvantEdge Production module for the NC code analysis. To improve the productivity, this research employs the optimization method to reduce cutting time.

Active vision을 이용한 곡면의 형상정보 획득 및 NC가공 시스템

  • 손영태;최영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.256-261
    • /
    • 1992
  • Acquisition of 3D points is an essential process for modelling of physical 3D objects. Although Coordinate Measuring Machine(CMM) is most accurate for this purpose, it is very time consuming. To enhance the data aquisition speed for scuptured surfaces, active vision with reflecctometric method was used for our system. A fter the data acquisition, the system automatically generates cutting tool path for the 3-axis milling of the object. The fullyintegrated system from the data acquisition to the NC-code generation was implemented with IBN-PC/386 and necessary hardwears.

A study on the manufacture of extrusion square dies (평금형 CNC 가공 S/W 개발에 관한 연구)

  • 조승래
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.280-283
    • /
    • 1999
  • Square dies are widely used for hot extrusion processes with high production rate. However the design and manufacture of square dies mainly relies on experience of industrial engineers To overcome such difficulty this study develops a method of automatic generation of NC-codes for the manufacture of extrusion square dies. The result shows that the method can reduce the lead time for the design and manufacture of square dies as well as eliminating engineers ow experience.

  • PDF

분해 모델링 기법을 이용한 절삭 영역 탐색 알고리즘

  • 김용현;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.255-255
    • /
    • 2004
  • 일반적으로 10,000 rpm 이상의 고속, 고이송 가공이 수행되는 고속가공에서 절삭력의 급격한 증가는 치명적인 결과를 초래할 수 있다. 따라서 실제 가공에 앞서 NC code에 존재하는 에러 유무를 검출하고, 주어진 절삭 조건의 적합성을 사전에 검사하는 NC 모의 가공 시스템의 중요성이 점점 강조되고 있는 실정이다. 절삭 영역의 탐색에는 일반적으로 Z-map 방식이 사용되고 있다. Z-map 방식은 자료구조의 단순성과 완결성으로 인하여 계산속돈가 라르고 오류 발생의 가능성이 상대적으로 낮기 때문에 상용 CAM 시스템은 대부분 이 방식을 기반으로 하고 있다.(중략)

  • PDF

A Study on the Manufacture of Extrusion Square Die (평금형 CNC 가공 S/W 개발에 관한 연구)

  • 박태원;조승래;이춘만
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.179-185
    • /
    • 2000
  • Square dies are widely used for hot extrusion processes with high production rate, however, the design and manufacture of square dies mainly relies on experience of industrial engineers. To overcome such difficulty, this study presents a method of automatic generation of NC-codes for the manufacture of extrusion square dies. The result shows that the method can reduce the lead-time for the design and manufacture of square dies.

  • PDF

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.

An interactive measuring and inspection system for NC machine tools (NC 공작기계용 대화형 측정 및 검사시스템)

  • 김경돈;정성종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1399-1402
    • /
    • 1997
  • Design methodology of Interactuve Measuring Part Program Generating Tools(IMPPGT) realized on the FANUC 15MA using touch trigger probes and interactive macro functions of the CNC was described in this paper. Measuring G codes have been designed according to probe ste up, basic and applied inspection items by using measuring arguments. Menu driven measuring and inspection functions of the IMPPGT were studied and implemented on the CNC through the macro executor and ROM writer. Using the developed measuring G code system on the machine tool, untended measurement and inspection operation was able to be realized in precision FMS lines.

  • PDF

Construction of a Database for Wire Cutting Electrodischarge Conditions and Variable taper Wire-cut Machining. (와이어 컷 방전가공조건 데이터베이스 구축 및 상하이형상 가공)

  • 유우식;이규섭
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.59
    • /
    • pp.119-127
    • /
    • 2000
  • This paper describes the database for wire cutting electrodischarge conditions and variable taper wire-cut Machining. Electodischarge wire-cut machining is applicable to all materials that are fairly good electrical conductors, including metals, alloys, and most carbides. Thus it provides a relatively simple method for making holes of any desired cross section in materials that are too hard or brittle to be machined by most other methods. In conventional wire cutting CAM systems usually generate the NC code omitting electrodischarge conditions, so operator edits the NC code manually. But it is very inefficient. Therefore in this paper we propose a wire cutting CAM system including database for electrodischarge conditions. Proposed system consists of three steps: 1) Development of database for electrodischarge conditions 2) Development of CAM functions, Including 2D CAD modeling tools, file I/O functions, wire path genera tion functions and postprocessor. 3) Development of variable taper wire-cut machining module. The proposed system has been tested in the JinYoung precision Machine Co.,LTD. and found to be working satisfactorily.

  • PDF

The Development of CAM Software for Ultra-precision Aspheric Surface (초정밀 비구면 가공용 CAM 소프트웨어 개발에 대한 연구)

  • Yang, Min-Yang;Lee, Taik-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.79-86
    • /
    • 2002
  • As consumer electronics, information, and aero-space industry grow, the demand for aspheric lens increases higher. To enhance the precision and productivity of aspheric surface, a CAM system for ultra-precision aspheric surface needs to be realized. In this study, the developed CAM system can generate NC code fur various aspheric surfaces fast and precisely by a new bi-arc interpolation method that the location of maximum error is fixed at an efficient point. The newly developed bi-arc meets the given tolerance more precisely, performs faster calculation. The cutting condition input module and the NC code verification module are adequate to ultra-precision machining, so that a operator can obtain products fast and easily.