• Title/Summary/Keyword: NASICON ionic conductivity

Search Result 10, Processing Time 0.019 seconds

Effects of Heat-treatment Condition on the Characteristics of Sintering and Electrical Behaviors of Two NASICON Compounds (열처리조건이 두 NASICON 조성의 소결 및 전기적특성에 미치는 영향)

  • 강희복;조남희;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.685-692
    • /
    • 1997
  • Effects of sintering temperature and time on the phase formation, the characteristics of sintering and electrical behaviors of NASICON compounds with Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compositions synthesized by solid state reaction were investigated. Maximum relative densities of 96% and 91% were obtained for Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compounds, respectively. Complex impedance analysis in a frequency range below 4 MHz was performed to measure the ionic conductivity and migration barrier height of the compounds at RT-30$0^{\circ}C$. The maximum ionic conductivity and the minimum migration barrier height were 0.45 ohm-1cm-1 and 0.07 eV, respectively. The migration barrier height of the high temperature form (space group : R3c) is about 30-40% of that of the low temperature form (space group : C2/c) in two NASICON compounds. Ionic conductivity increases with increasing sinterability, and the presence of glass phase in Na3.2Zr1.3Si2.2P0.8O10.5 compounds lowers significantly ionic conductivity at temperatures above 14$0^{\circ}C$.

  • PDF

Computation of Ionic Conductivity in NASICON Solid Electrolytes (I) Conduction Paths with no Mid-Na Sites (NASICON 고체전해질의 이온전도도 계산 (I) Mid-Na의 영향을 고려하지 않은 경우)

  • 최진삼;서양곤;강은태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.957-965
    • /
    • 1995
  • The ionic conductivityof NASICON solid electrolytes was simulated by using Monte Carlo Method (MCM) based on a hopping model as functions of temoperature and composition. Two conduction paths were used : jumping from Na1 to Na2 and jumping from Na1 to Na2 and jumping from Na2 to Na2. Vacancy availability factor, V was affected by composition, temperature and the conduction paths. For β"-Alumina, it was known that the minimum of charge correlation factor, fc appears at the composition, p=0.5, but there was not shown the minimum of fc for NASICON. When the NASICON composition, x, approaches 2.5, the curve of In σT vs. 1/T* was shown Arrhenius behavior and also In (VWfc) was a linear function of 1/T*. The results of simulations on the considered conduction paths didn't agree with the experimental results. Thus it will be necessary to include the another Na sites as mid-Na site on the conduction path to obtain the better results.

  • PDF

Computation of Ionic Conductivity at NASICON Solid Electrolyte (III) Na1$\longrightarrow$mid-Na$\longrightarrow$Na2 Conduction Paths (NASICON 고체 전해질의 이온 전도도 계산 (III) 전도경로가 Na1$\longrightarrow$mid-Na$\longrightarrow$Na2인경우)

  • 최진삼;서양곤;강은태
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.645-652
    • /
    • 1996
  • The ionic conductivity of NASICON (Na Super Ionic Conductor) solid electrolyte was simulated by using Monte Carlo Method (MCM)based on a hopping model. We assumed that the conduction path of Na ions is Na1→mid-Na→Na2 where the mid-Na sites are shallow potential sites to induce 'a breathing-like movement' of Na ions in the NASICON framework. The minimum of charge correlation factor Fc and the maximum of appeared at nearby x=2.0 The occupancy of mid-Na site affected the depth of potential barrier and the conduc-tivity of the NASICON. At above x=0.3 ln σT vs. 1/T* plots have been shown Arrhenius behavior but in (VWfc)vs. 1/T* have been shown the Arrhenius type tendency at x=1 MCM results accorded with the experi-mental procedure. The role of mid-Na on Na+ ion conduction could be explained by an additional driving force and a breating-like movement model for motions of Na+ ions in the NASICON framework. As we couldn't clearly remarked the model which is the better it seems reasonable to conclude that these hypothesies are suitable to explain the FIC behavior at NASICON.

  • PDF

Computation of Ionic Conductivity at NASICON Solid Electrolytes (II) Effects of mid-Na Sites on Na1-Na2 Conduction Paths (NASICON 고체 전해질의 이온 전도도 계산 (II) Na1-Na2 전도 경로에 미치는 mid-Na의 영향)

  • 최진삼;서양곤;강은태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1292-1300
    • /
    • 1995
  • The ionic conductivity of NASICON solid electrolytes was simulated by using Monte Carlo Method (MCM). There were included two conduction paths: (1) Na1-Na2 and (2) Na1-Na2 including Na2-Na2. We assumed that mid-Na ions provde an additional driving force for Na mobile ions due to the interionic repulsion between Na1 and Na2 ions. The inflection point of vacancy availability factor, V has been shown at nearby x=2, the maximum mid-Na ions. The inflection point of vacancy availability factor, V has been shown at nearby x=2, the maximum mid-Na sites are occupied. The effective jump frequency factor, V has been shown at nearby x=2, the maximum mid-Na sites are occupied. The effective jump frequency factor, W increased rapidly with the composition at low temperature, but decreased at high temperature region. On Na1-Na2 conduction path, the minimum of charge correlation factor, fc and the maximum of $\sigma$T were appeared at x=2.0. this indicated that mid-Na ions affect on the high ionic conductivity behavior. At the whole range of NASICON composition, 1n $\sigma$T vs. 1/T* plots have been shown Arrhenius behavior but 1n (VWFc) vs. 1/T* have been shown the Arrhenius type tendency at x=2, which mid-Na is being the maximum. The results of MCM agreed with the experimental one when the chosen saddle point value was 6$\varepsilon$ : 3$\varepsilon$. Here the calculated characteristic parameter of materials, K and the phase transition temperature were -4.001$\times$103 and 178$^{\circ}C$ (1/T*=1.92, 1000/T=2.22), respectively.

  • PDF

Effect of Abnormal Grain Growth on Ionic Conductivity in LATP (LATP 내 비정상 입자성장이 이온 전도도에 미치는 영향)

  • Hyungik Choi;Yoonsoo Han
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.23-29
    • /
    • 2024
  • This study investigates the effect of the microstructure of Li1.3Al0.3Ti1.7(PO4)3 (LATP), a solid electrolyte, on its ionic conductivity. Solid electrolytes, a key component in electrochemical energy storage devices such as batteries, differ from traditional liquid electrolytes by utilizing solid-state ionic conductors. LATP, characterized by its NASICON structure, facilitates rapid lithium-ion movement and exhibits relatively high ionic conductivity, chemical stability, and good electrochemical compatibility. In this study, the microstructure and ionic conductivity of LATP specimens sintered at 850, 900, and 950℃ for various sintering times are analyzed. The results indicate that the changes in the microstructure due to sintering temperature and time significantly affect ionic conductivity. Notably, the specimens sintered at 900℃ for 30 min exhibit high ionic conductivity. This study presents a method to optimize the ionic conductivity of LATP. Additionally, it underscores the need for a deeper understanding of the Li-ion diffusion mechanism and quantitative microstructure analysis.

Preparation of NASIglasses by Sol-Gel Process (솔-젤법에 의한 NASIglass의 제조)

  • 김희주;강은태;김종옥
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1357-1368
    • /
    • 1995
  • Nasigels of composition Na0.75Zr2PSi2O12 and Na3Zr2PSi2O12 have been synthesized by the sol-gel technique using metal alkoxide precursors. The monolithic dry gels of Na0.75Zr2PSi2O12 with no crack have been prepared by the control of the shrinkage rte, but gels of Na3Zr2PSi2O12 were impossible to prepare without cracking. The gels treated up to 80$0^{\circ}C$ led to the formtion of glass but the glasses were converted to the crystalline phases at above this temperature. Crystaline phases precipitated from the Na0.75Zr2PSi2O12 glass were NASICON-like phase, Na2Si2O5, and free Zirconia. Phase that precipitated from the Na3Zr2PSi2O12 was only rhombohedral NASICON. For Na0.75Zr2PSi2O12 gels, framework of PO4 tetrahedra and SiO4(PO4) tetrahedra formed at low temperature but changed to that of SiO4 and SiO4(PO4) tetrahedras as it were crystallized. In the case of Na3Zr2PSi2O12 gel, framework of isolated PO4 and SiO4 tetrahedras formed at low temperature but changed to SiO4(PO4) tetrahedra framework which usually formed in the NASICON crystal after crystallization at high temperature. The gels treated up to 80$0^{\circ}C$ contained the residual water. The ionic conduction was attributed to the motion of proton and Na+ ion at low (up to 150~20$0^{\circ}C$) and high temperatures, respectively. As the temperature of heat treatment increased, ionic conductivity gradaully increased with the extent of precipitation of crystalline phase.

  • PDF

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Influence of Ga Content on the Ionic Conductivity of Li1+XGaXTi2-X(PO4)3 Solid-State Electrolyte Synthesized by the Sol-Gel Method

  • Seong-Jin Cho;Jeong-Hwan Song
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.185-193
    • /
    • 2024
  • In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 ℃, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 ℃. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 ℃ to 1,000 ℃ at 100 ℃ intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TG-DTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 ℃ and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3Ti1.7(PO4)3 pellet sintered at 900 ℃ was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solid-state electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 ℃ had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.

A Study on the Microstructures and Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 with Different Synthesis Routes (합성 방법에 따른 Li1.3Al0.3Ti1.7(PO4)3 소결체의 미세 구조 및 이온전도 특성 연구)

  • Seul Ki Choi;Jeawon Choi;MinHo Yang
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.107-115
    • /
    • 2023
  • Li1.3Al0.3Ti1.7(PO4)3(LATP) is considered a promising material for all-solid-state lithium batteries owing to its high moisture stability, wide potential window (~6 V), and relatively high ion conductivity (10-3-10-4 S/cm). Solid electrolytes based on LATP are manufactured via sintering, using LATP powder as the starting material. The properties of the starting materials depend on the synthesis conditions, which affect the microstructure and ionic conductivity of the solid electrolytes. In this study, we synthesize the LATP powder using sol-gel and co-precipitation methods and characterize the physical properties of powder, such as size, shape, and crystallinity. In addition, we have prepared a disc-shaped LATP solid electrolyte using LATP powder as the starting material. In addition, X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopic measurements are conducted to analyze the grain size, microstructures, and ion conduction properties. These results indicate that the synthesis conditions of the powder are a crucial factor in creating microstructures and affecting the conduction properties of lithium ions in solid electrolytes.

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu;Song, Shangbin;Xiang, Xing;Hu, Qing;Zhang, Chi;Xia, Ziwen;Xu, Yinghui;Zha, Wenping;Li, Junyang;Gonzale, Paulina Mercedes;Han, Young-Hwan;Chen, Fei
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.