• 제목/요약/키워드: NAND Flash memory

검색결과 304건 처리시간 0.023초

Garbage Collection Method for NAND Flash Memory based on Analysis of Page Ratio (페이지 비율 분석 기반의 NAND 플래시 메모리를 위한 가비지 컬렉션 기법)

  • Lee, Seung-Hwan;Ok, Dong-Seok;Yoon, Chang-Bae;Lee, Tae-Hoon;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • 제15권9호
    • /
    • pp.617-625
    • /
    • 2009
  • NAND flash memory is widely used in embedded systems because of many attractive features, such as small size, light weight, low power consumption and fast access speed. However, it requires garbage collection, which includes erase operations. Erase operation is very slow. Besides, the number of the erase operations allowed to be carried out for each block is limited. The proposed garbage collection method focuses on minimizing the total number of erase operations, the deviation value of each block and the garbage collection time. NAND flash memory consists of pages of three types, such as valid pages, invalid pages and free pages. In order to achieve above goals, we use a page rate to decide when to do garbage collection and to select the target victim block. Additionally, We implement allocating method and group management method. Simulation results show that the proposed policy performs better than Greedy or CAT with the maximum rate at 82% of reduction in the deviation value of erase operation and 75% reduction in garbage collection time.

Application-aware Design Parameter Exploration of NAND Flash Memory

  • Bang, Kwanhu;Kim, Dong-Gun;Park, Sang-Hoon;Chung, Eui-Young;Lee, Hyuk-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.291-302
    • /
    • 2013
  • NAND flash memory (NFM) based storage devices, e.g. Solid State Drive (SSD), are rapidly replacing conventional storage devices, e.g. Hard Disk Drive (HDD). As NAND flash memory technology advances, its specification has evolved to support denser cells and larger pages and blocks. However, efforts to fully understand their impacts on design objectives such as performance, power, and cost for various applications are often neglected. Our research shows this recent trend can adversely affect the design objectives depending on the characteristics of applications. Past works mostly focused on improving the specific design objectives of NFM based systems via various architectural solutions when the specification of NFM is given. Several other works attempted to model and characterize NFM but did not access the system-level impacts of individual parameters. To the best of our knowledge, this paper is the first work that considers the specification of NFM as the design parameters of NAND flash storage devices (NFSDs) and analyzes the characteristics of various synthesized and real traces and their interaction with design parameters. Our research shows that optimizing design parameters depends heavily on the characteristics of applications. The main contribution of this research is to understand the effects of low-level specifications of NFM, e.g. cell type, page size, and block size, on system-level metrics such as performance, cost, and power consumption in various applications with different characteristics, e.g. request length, update ratios, read-and-modify ratios. Experimental results show that the optimized page and block size can achieve up to 15 times better performance than the conventional NFM configuration in various applications. The results can be used to optimize the system-level objectives of a system with specific applications, e.g. embedded systems with NFM chips, or predict the future direction of NFM.

A Flash Memory Management Method for Enhancing the Recovery Performance (복구 성능 향상을 위한 플래시 메모리 관리 기법)

  • Park, Song-Hwa;Lee, Jung-Hoon;Cho, Sung-Woo;Kim, Sang-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제13권5호
    • /
    • pp.235-243
    • /
    • 2018
  • NAND flash memory has been widely used for embedded systems as storage device and the flash memory file systems such as JFFS2, YAFFS/YAFFS2 have been adopted by these embedded systems. The flash memory file systems provide the high performance and overcome the limitations of flash memory. However, these file systems don't solve the slow mount time problem when a sudden power failure happens. In this paper, we proposed a flash memory management method for enhancing the recovery performance. The proposed method manages the flash memory block type and stores the block type information at recovery image block. When file operations are occurred, our method stores the file information at the metadata block before and after the file operation. When mounting the flash memory, our method only scans the recovery image blocks and metadata blocks. The proposed method reduces the mount time by seeking the metadata block locations fast by using the recovery image blocks. We implemented the proposed method and evaluation results show that our method reduces the mount time 13 ~ 46 % compared with YAFFS2.

An Address Translation Technique Large NAND Flash Memory using Page Level Mapping (페이지 단위 매핑 기반 대용량 NAND플래시를 위한 주소변환기법)

  • Seo, Hyun-Min;Kwon, Oh-Hoon;Park, Jun-Seok;Koh, Kern
    • Journal of KIISE:Computing Practices and Letters
    • /
    • 제16권3호
    • /
    • pp.371-375
    • /
    • 2010
  • SSD is a storage medium based on NAND Flash memory. Because of its short latency, low power consumption, and resistance to shock, it's not only used in PC but also in server computers. Most SSDs use FTL to overcome the erase-before-overwrite characteristic of NAND flash. There are several types of FTL, but page mapped FTL shows better performance than others. But its usefulness is limited because of its large memory footprint for the mapping table. For example, 64MB memory space is required only for the mapping table for a 64GB MLC SSD. In this paper, we propose a novel caching scheme for the mapping table. By using the mapping-table-meta-data we construct a fully associative cache, and translate the address within O(1) time. The simulation results show more than 80 hit ratio with 32KB cache and 90% with 512KB cache. The overall memory footprint was only 1.9% of 64MB. The time overhead of cache miss was measured lower than 2% for most workload.

Design of NAND Flash Translation Layer Based on Valid Page Lookup Table (유효 페이지 색인 테이블을 활용한 NAND Flash Translation Layer 설계)

  • 신정환;이인환
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2003년도 컴퓨터소사이어티 추계학술대회논문집
    • /
    • pp.15-18
    • /
    • 2003
  • Flash memory becomes more important for its fast access speed, low-power, shock resistance and nonvolatile storage. But its native restrictions that have limited 1ifetime, inability of update in place, different size unit of read/write and erase operations need to managed by FTL(Flash Translation Layer). FTL has to control the wear-leveling, address mapping, bad block management of flash memory. In this paper, we focuses on the fast access to address mapping table and proposed the way of faster valid page search in the flash memory using the VPLT(Valid Page Lookup Table). This method is expected to decrease the frequency of access of flash memory that have an significant effect on performance of read and block-transfer operations. For the validations, we implemented the FTL based on Windows CE platform and obtained an improved result.

  • PDF

An Efficient Index Buffer Management Scheme for a B+ tree on Flash Memory (플래시 메모리상에 B+트리를 위한 효율적인 색인 버퍼 관리 정책)

  • Lee, Hyun-Seob;Joo, Young-Do;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • 제14D권7호
    • /
    • pp.719-726
    • /
    • 2007
  • Recently, NAND flash memory has been used for a storage device in various mobile computing devices such as MP3 players, mobile phones and laptops because of its shock-resistant, low-power consumption, and none-volatile properties. However, due to the very distinct characteristics of flash memory, disk based systems and applications may result in severe performance degradation when directly adopting them on flash memory storage systems. Especially, when a B-tree is constructed, intensive overwrite operations may be caused by record inserting, deleting, and its reorganizing, This could result in severe performance degradation on NAND flash memory. In this paper, we propose an efficient buffer management scheme, called IBSF, which eliminates redundant index units in the index buffer and then delays the time that the index buffer is filled up. Consequently, IBSF significantly reduces the number of write operations to a flash memory when constructing a B-tree. We also show that IBSF yields a better performance on a flash memory by comparing it to the related technique called BFTL through various experiments.

Log-Structured B-Tree for NAND Flash Memory (NAND 플래시 메모리를 위한 로그 기반의 B-트리)

  • Kim, Bo-Kyeong;Joo, Young-Do;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • 제15D권6호
    • /
    • pp.755-766
    • /
    • 2008
  • Recently, NAND flash memory is becoming into the spotlight as a next-generation storage device because of its small size, fast speed, low power consumption, and etc. compared to the hard disk. However, due to the distinct characteristics such as erase-before-write architecture, asymmetric operation speed and unit, disk-based systems and applications may result in severe performance degradation when directly implementing them on NAND flash memory. Especially when a B-tree is implemented on NAND flash memory, intensive overwrite operations may be caused by record inserting, deleting, and reorganizing. These may result in severe performance degradation. Although ${\mu}$-tree has been proposed in order to overcome this problem, it suffers from frequent node split and rapid increment of its height. In this paper, we propose Log-Structured B-Tree(LSB-Tree) where the corresponding log node to a leaf node is allocated for update operation and then the modified data in the log node is stored at only one write operation. LSB-tree reduces additional write operations by deferring the change of parent nodes. Also, it reduces the write operation by switching a log node to a new leaf node when inserting the data sequentially by the key order. Finally, we show that LSB-tree yields a better performance on NAND flash memory by comparing it to ${\mu}$-tree through various experiments.

The Analysis of Threshold Voltage Shift for Tapered O/N/O and O/N/F Structures in 3D NAND Flash Memory (3D NAND Flash Memory에서 Tapering된 O/N/O 및 O/N/F 구조의 Threshold Voltage 변화 분석)

  • Jihwan Lee;Jaewoo Lee;Myounggon Kang
    • Journal of IKEEE
    • /
    • 제28권1호
    • /
    • pp.110-115
    • /
    • 2024
  • This paper analyzed the Vth (Threshold Voltage) variations in 3D NAND Flash memory with tapered O/N/O (Oxide/Nitride/Oxide) structure and O/N/F (Oxide/Nitride/Ferroelectric) structure, where the blocking oxide is replaced by ferroelectric material. With a tapering angle of 0°, the O/N/F structure exhibits lower resistance compared to the O/N/O structure, resulting in reduced Vth variations in both the upper and lower regions of the WL (Word Line). Tapered 3D NAND Flash memory shows a decrease in channel area and an increase in channel resistance as it moves from the upper to the lower WL. Consequently, as the tapering angle increases, the Vth decreases in the upper WL and increases in the lower WL. The tapered O/N/F structure, influenced by Vfe proportional to the channel radius, leads to a greater reduction in Vth in the upper WL compared to the O/N/O structure. Additionally, the lower WL in the O/N/F structure experiences a greater increase in Vth compared to the O/N/O structure, resulting in larger Vth variations with increasing tapering angles.

Efficient FTL Mapping Management for Multiple Sector Size-based Storage Systems with NAND Flash Memory (다중 섹터 사이즈를 지원하는 낸드 플래시 메모리 기반의 저장장치를 위한 효율적인 FTL 매핑 관리 기법)

  • Lim, Seung-Ho;Choi, Min
    • Journal of KIISE:Computing Practices and Letters
    • /
    • 제16권12호
    • /
    • pp.1199-1203
    • /
    • 2010
  • Data transfer between host system and storage device is based on the data unit called sector, which can be varied depending on computer systems. If NAND flash memory is used as a storage device, the variant sector size can affect storage system performance since its operation is much related to sector size and page size. In this paper, we propose an efficient FTL mapping management scheme to support multiple sector size within one NAND flash memory based storage device, and analyze the performance effect and management overhead. According to the proposed scheme, the management overhead of proposed FTL management is lower than conventional scheme when various sector sizes are configured in computer systems, while performance is less degraded in comparison with single sector size support system.

Garbage Collection Technique for Reduction of Migration Overhead and Lifetime Prolongment of NAND Flash Memory (낸드 플래시 메모리의 이주 오버헤드 감소 및 수명연장을 위한 가비지 컬렉션 기법)

  • Hwang, Sang-Ho;Kwak, Jong Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제11권2호
    • /
    • pp.125-134
    • /
    • 2016
  • NAND flash memory has unique characteristics like as 'out-place-update' and limited lifetime compared with traditional storage systems. According to out-of-place update scheme, a number of invalid (or called dead) pages can be generated. In this case, garbage collection is needed to reclaim invalid pages. Because garbage collection results in not only erase operations but also copy operations of valid (or called live) pages to other blocks, many garbage collection techniques have proposed to reduce the overhead and to increase the lifetime of NAND Flash systems. This techniques sometimes select victim blocks including cold data for the wear leveling. However, most of them overlook the cost of selecting victim blocks including cold data. In this paper, we propose a garbage collection technique named CAPi (Cost Age with Proportion of invalid pages). Considering the additional overhead of what to select victim blocks including cold data, CAPi improves the response time in garbage collection and increase the lifetime in memory systems. Additionally, the proposed scheme also improves the efficiency of garbage collection by separating cold data from hot data in valid pages. In experimental evaluation, we showed that CAPi yields up to, at maximum, 73% improvement in lifetime compared with existing garbage collections.