Selection of oxygen-tolerant strains and elucidation of their oxygen tolerance mechanism were crucial for effective use of bifidobacteria. Oxygen-tolerant bifidobacteria were able to significantly remove environmental oxygen (oxygen removal activity) as compared to oxygen-sensitive strains. Most oxygen removal activity was inhibited by heat treatment and exposure to extreme pH (2.0) of bifidobacterial cell. NADH oxidase was major enzyme related to oxygen removal activity. Oxygen-tolerant bifidobacteria possessed high NADH peroxidase activity level to detoxify $H_2O_2$ formed from reaction of NADH oxidase. Addition of oxygen to anaerobic culture broth significantly increased activities of HADH oxidase and NADH peroxidase within 1hr and rapid increment of oxygen concentration was prevented. Results showed NADH oxidase and NADH peroxidase of oxygen-tolerant bifidobacteria played important roles in elimination of oxygen and oxygen metabolite $(H_2O_2)$.
To study the relationship between oxygen tolerance and enzyme activity in the oxygen metabolism of bifidobacteria, the activities of catalase, superoxide dismutase (SOD), NADH oxidase and NADH peroxidase from six typical bifidobacteria and other bacteria were assayed by spectrophotometry. Catalase activity was hardly detected in any of the bifidobacteria tested. SOD activity was detected in every species including the Clostridium species. In particular SOD activity was notably high in the aerosensitive Bifidobacterium adolescentis. This fact indicates that SOD activity is not a critical factor to ensure aerotolerance. Aerosensitive B. adolescentis showed very low NADH oxidative enzyme activity whereas other aerotolerant bifidobacteria exhibited considerable activity for the enzymes. It seems that detoxification of $H_2O_2$ by NADH oxidative enzymes might be an important factor in improving for aerotolerant bifidobacteria survival rates in an oxygen environment.
The sk10 isolated from kimchi was identified as W. kimchii on the basis of l6s-rDNA sequencing. Studies were made to analyze the metabolic flux shift of the sk10 on glucose under aerobic growth conditions. The sk10 produced 38.2 mM acetate, 16.3 mM ethanol, and 33.2 mM lactate under aerobic conditions, but 2.4 mM acetate, 48.0 mM ethanol, and 44.1 mM lactate under anaerobic conditions. The NADH peroxidase (NADH-dependent hydrogen peroxidase) activity of sk10 grown under aerobic conditions was 11 times higher than that under anaerobic conditions. Under the low ratio of $NADH/NAD^+$, the metabolic flux toward lactate and ethanol was shifted to the flux through acetate kinase without NADH oxidation. The kinds of enzymes and metabolites of sk10 were close to those in the pathway of Leuconostoc sp., but the metabolites produced under aerobic growth conditions were different from those of Leuconostoc sp. The stoichiometric balance calculated using the concentrations of metabolites and substrate was about 97%, coincident with the theoretical values under both aerobic and anaerobic conditions. From these results, it was concluded that the metabolic flux of W. kimchii sk10 was partially shifted from lactate and ethanol to acetate under aerobic conditions only.
This study was carried out to analyze the metabolic flux of W. kimchii sk10 on pyruvate and ethanol as a carbon source. The sk10 grown on ethanol produced acetate under aerobic conditions rather than under anaerobic conditions. The lactate and acetate were produced on ethanol plus pyruvate by the sk10 grown under aerobic and anaerobic conditions, respectively. The resting cell of sk10 produced 99.1 mM acetate and 17.3 mM lactate under aerobic conditions and 51.1 mM acetate and 62.4 mM lactate under anaerobic conditions from ethanol plus pyruvate, respectively. This result is thought to be due to the difference in the $NADH/NAD^+$ ratio depending on the growth conditions. The 11-fold overproduction of NADH peroxidase results in a low $NADH/NAD^+$ratio under aerobic growth conditions. At the low $NADH/NAD^+$ ratio, the metabolic flux of pyruvate toward lactate has to be shifted to a flux toward acetate without NADH oxidation to $NAD^+$, and ethanol oxidation to acetate coupled to $NAD^+$ reduction to NADH has to be activated.
The protective of influences of sodium selenitc ($Na_2SeO_3$) against the methemoglobinemia with sodium nitrite were investigated on hemoglobin, methemoglobin, glutathione peroxidase and NADH-methemoglobin reductase activity in rabbits which were given 0,1,3 and 9ppm sodium selenite of drinking water for a week. Dietary selenium did not alter total hemoglobin in the blood of rabbits. Selenium was found to decrease nitrite-induced methemoglobin in a dose-dependent manner. The glutathione peroxidase activity was also increased by selenium in all the experimental groups. However, the NADH-methemoglobin reductase activity by selenite did not show significant differences as concerns the methemoglobinemia. These results showed that selenium could inhibit nitrite-induced methemoglobinemia. Its influence of inhibition is suggested that the effect of the reduction of methemoglobin was greatly stimulated by glutathione peroxidase activity.
Whereas cationic extracellular peroxidases (PODs) were observed in the suspension cultures of rose (Rosa sp. L. cv Pual's scarlet) grown under normal conditions, new anionic isozymes were induced within 24 hr by the treatment of low host-specific elicitor (10 mg glucan/L media) prepared from yeast cell wall. Prominent anionic (pI 6.1) and cationic POD (pI 8.4) were purified and characterized to understand the physiological role of the enzymes. Both enzymes were purified (ca.200 fold) by the ammonium sulfate precipitation, ion exchange chromate-graphy and gel filtration chromatography. The Km values of the purified anionic POD for ferulic acid and $\textrm{H}_2\textrm{O}_2$ were 4.64 mM and 0.72 mM, whereas those of the cationic POD were 1.38 mM and 0.48 mM, respetively. The activity of the anionic POD as NADH oxidase was twice higher than that of cationic POD. The NADH oxidation in the anionic POD fraction was inhibited by 60% on the addition of 0.1 mM coniferyl alcohol, while that in the cationic fraction was inhibited by 15%.
Kim, Hee-Jung;Moon, Ja-Young;Lee, John-Hwa;Park, Kie-In
Korean Journal of Veterinary Service
/
v.30
no.3
/
pp.291-304
/
2007
Mutants of an obligate aerobic bacterium, Vitreoscilla, that have deficiency in heat-labile catalase-peroxidase hydroperoxidase I (HPI) were created by EMS treatment. The catalase-peroxidase HPI-deficient mutant showed substantially lower peroxidase activity in exponential and mid-stationary phase compared with the wild type strain. In late stationary phase, the mutant exhibited no peroxidase activity. Peroxidase deficiency in the mutant was revealed by polyacrylamide gels stained for peroxidase activity. Characteristically, catalase levels in the mutant increased about 14- and 8-fold during growth in the exponential and stationary phases, respectively, compared to those in the wild type, suggesting a compensatory effect for protection from $H_2O_2$ toxicity. The mutant showed differences in physiology from the wild type: retardation in growth rate and decrease in oxygen consumption. Both the wild type and the catalase-peroxidase HPI-deficient mutant of Vitreoscilla had lower growth rates in media containing increasing $H_2O_2$ concentrations. However, the mutant exhibited an additionally decreased growth rate after 6 to 8 h of growth compared to the wild type. The wild type was resistent up to 20 mM $H_2O_2$, whereas the mutant was very sensitive to high concentrations of exogenous $H_2O_2$. Although elevated catalase levels would provide protection of the bacteria from the deleterious effect of $H_2O_2$, it did not appear to be complete. Cell-free extracts of the mutant showed decreased NADH oxidation rates and higher accumulation of $H_2O_2$ during this oxidation. These results may account for the impaired growth and earlier onset of death phase by the catalase-peroxidase HPI-deficient mutant of Vitreoscilla.
To study the oxygen tolerance mechanism of bifidobacteria, we have studied the growth of cells, the activities of the enzymes which were related with oxygen, such as catalase, superoxide dismutase(SOD), NADH oxidase, and NADH peroxidase, and cellular fatty acid compositions of Bifidobacterium adolescentis and B. longum under anaerobic and aerated (microaerobic and aerobic) conditions. B. longum grew relatively well under the microaerobic conditions, whereas the growth of B. adolescentis was inhibited under the same aerated conditions. B. adolescentis had extremely low level of NADH oxidative enzymes while B. longum had the relatively high level of NADH oxidative enzymes, whose activities were dramatically increased from 3.7 to 11.4 times by microaerobic condition but not in B. adolescentis. The activity of SOD was unexpectedly high in B. adolescentis compared with in B. longum under anaerobic and aerated conditions. The activities of catalase were not detected in all samples tested in this study. We also found that normal $C_{l6:0}$ and $C_{18:1}$ were the major fatty acids in B. adolescentis and B. longum under anaerobic and aerated conditions. 2.2-14.1% $C_{l9:0}$ cyclo fatty acid was detected only in B. longum and the fatty acid was increased by the addition of the aeration. The $C_{l9:0}$ cyclic fatty acid was identified as a cis 9, 10-methylene octadecanoic acid, which was different from lactobacillic acid in the cyclized site. 6.6%-24.6% of dimethyl acetals (DMA) which came from plasmalogen were observed in the B. adolescentis and B. longum grown under anaerobic condition, and the components were notably decreased in the cells grown under the aerated conditions. It is believed that NADH oxidative enzymes play an important role to detoxify oxygen metabolites of Bifidobacteriurn spp. under anaerobic and microaerobic conditions. Independently from oxidative enzymes, it seems that oxygen stress may induce the change of the level of cellular fatty acids showing an increase of $C_{l9:0}$ cyclo in B. longum and a decrease of $C_{l8:1}$ of plasmalogen in B. longum and B. adolescentis to adapt in environment.
In the present study, the effects of allopurinol on paraquat toxicity were investigated in paraquat-treated rats. The surivals of paraquat-treated rats were increased by allopurinol treatment. The contents of glutathione in liver and kidney were significantly decreased by paraquat, but restored by allopurinol. The activity of xanthine oxidase was significantly reduced but NADH dehydrogenase was not changed by allopurinol teatment. The activities of catalase, SOD and glutathione peroxidase in liver were significantly decreased by paraquat but catalase was restored by allopurinol treatment.
An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.