• Title/Summary/Keyword: NAD(P)H

Search Result 191, Processing Time 0.03 seconds

Characterization and Evolutionary Relationship of Lactate Dehydrogenase in Liver of Lampetra japonica and Liver-specific C4 Isozyme in Gadus macrocephdus. (칠성장어(Lampetra japnica) 간조직 젖산탈수소효소와 대구(Gadus macrocephalus) liver-Specific C4동위효소의 특성 및 진화적 관계)

  • 박선영;조성규;염정주
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.708-715
    • /
    • 2004
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) in liver of Lempetra japonica was purified in buffer of affinity chromatography. The liver-specific $C_4$ isozyme of Gadus macrocephalus was purified by heat treatment, affinity chromatography, and DEAE-Sephacel chromatography. The liver-specific $C_4$ isozyme was eluted in a buffer containing NAD+ and was coeluted with $B_4$isozyme in plain buffer of affinity chromagraphy. Liver-specific $C_4$ isozyme in G. macrocephalus was the most thermostable, and$B_4$isozyme was more stable than $A_4$. The LDH in the fraction of pH 7.45 purified from the liver of L. iaponica by chromatofocusing was more inhibited by pyruvate than purified LDH. The optimum pH of the LDH isozyme in the liver of L. japonica was 7.5 and that of liver-specific$C_4$ isozyme was 8.5. The LDH in liver of L. japonica made complexes more with antibody against Coreoperca herzi$A_4$ and liver-specific $C_4$ than with that against eye-specific $C_4$. Therefore, the structure of the LDH in liver of L. japonica might be similarly evolved to that of subunit A and liver-specific $C_4$ isozyme in liver tissue of G. macrocephalus. The evolution rate of subunit C is faster than that of subunit A. LDH in liver of L. japonica has not one isozyme but isozymes and it was also found out to have not only subunit A and B but also subunit C.

Purification and Properties of Thermostable L-Lactate Dehydrogenase Produced by Escherichia Coli (대장균으로 부터 생산된 L-lactate Dehydrogenase의 정제 및 특성)

  • Song, Jae-Young;Kim, Kyoug-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.6
    • /
    • pp.964-972
    • /
    • 1994
  • The 4.3-kb gene coding for L-lactate dehydrogenase of Bacillus stearothermophilus has been subcloned and expressed in E. coli cells. The enzyme was purified 200-fold with 25% yield by heat treatment , DEAE-Sephadex, and NAD++ -Sepharose CL-4B affinity chromatography followed by gel filtration through Sephadex G-200 . The molecular weight of the purfied enzyme was estimated to be about 35, 000 and 140, 000 on SDS-polyacrylamide gel electrophoresis and gel filtration, respectively. indicating that the enzyme is composed of four identical subunits. THe enzyme for pyruvate reduction and lactate oxdiation was stable at 60 and 75$^{\circ}C$ for 30 min, and the optimal temperatures for both reactions were 60 and 7$0^{\circ}C$, respectively. The enzyme had an optimal pH at 5.5 and 8.5 in pyruvate reduction and lactate oxidation, respectively. The pH stability of enzyme of pyruvate reduction was table between pH 5 and 7. more than 90% of enzyme activity was lost at 1mM FeSO4 and p-chloromercuribonzoate. The maximal activation of the enzyme was obtained with 0.8mM fructose 1, 6-bisphosphate.

  • PDF

Carbon Monoxide Dehydrogenase in Cell Extracts of an Acinetobacter Isolate (Acinetobacter sp.1의 일산화탄소 산화효소의 특성)

  • 조진원;김영민
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 1986
  • Extracts of CO-autotrophically grown cells of Acinetobacter sp. 1 were shown to use thionin, methylene blue, or 2,6-dichlorophenol-indophenol, but not NAD, NADP, FAD, or FMN, as electron acceptors for the oxidation of CO under strictly anaerobic conditions. The CO dehydrogenase (CO-DH) in the thes bacterium was found to be an inducible enzyme. The enzyme activity was determined by an assay based on the CO-dependent reduction of thionin. Maximal reaction rates were found at pH 7.5 and $60^{\circ}C$, and the Arrhenius plot revealed an activation energy of 6.1 kcal/mol(25.5kJ/mol). THe $K_m$ m/ for CO was $154{\mu}M$. Known metalchelating agents tested had no effects on the CO-DH activity. No divalent cations tested affect the enzyme activity significantly escept $Cu^{2+}$ which suppressed the activity completely. The enzyme was inhibited by glucose and succinate. The same extracts catalyzed oxidation of hydrogen gas and formate with thionin as electron acceptor. The CO-DH of Acinetobacter sp. 1 was to have no immunological relationship with that of Pseudomonas carboxydohydrogena.

  • PDF

Isolation and Properties of Cytoplasmic α-Glycerol 3-Phosphate Dehydrogenase from the Pectoral Muscle of the Fruit Bat, Eidolon helvum

  • Agboola, Femi Kayode;Thomson, Alan;Afolayan, Adeyinka
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.159-166
    • /
    • 2003
  • Cytoplasmic $\alpha$-glycerol-3-phosphate dehydrogenase from fruit-bat-breast muscle was purified by ion-exchange and affinity chromatography. The specific activity of the purified enzyme was approximately 120 units/mg of protein. The apparent molecular weight of the native enzyme, as determined by gel filtration on Sephadex G-100 was $59,500{\pm}650$ daltons; its subunit size was estimated to be $35,700{\pm}140$ by SDS-polyacrylamide gel electrophoresis. The true Michaelis-Menten constants for all substrates at pH 7.5 were $3.9{\pm}0.7\;mM$, $0.65{\pm}0.05\;mM$, $0.26{\pm}0.06\;mM$, and $0.005{\pm}0.0004\;mM$ for L-glycerol-3-phosphate, $NAD^+$, DHAP, and NADH, respectively. The true Michaelis-Menten constants at pH 10.0 were $2.30{\pm}0.21\;mM$ and $0.20{\pm}0.01\;mM$ for L-glycerol-3-phosphate and $NAD^+$, respectively. The turnover number, $k_{cat}$, of the forward reaction was $1.9{\pm}0.2{\times}10^4\;s^{-1}$. The treatment of the enzyme with 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) under denaturing conditions indicated that there were a total of eight cysteine residues, while only two of these residues were reactive towards DTNB in the native enzyme. The overall results of the in vitro experiments suggest that $\alpha$-glycerol-3-phosphate dehydrogenase of the fruit bat preferentially catalyses the reduction of dihydroxyacetone phosphate to glycerol-3-phosphate.

The NAD(P)H: Quinine Oxidoreductase 1 (NQO1) Gene 609 C>T Polymorphism is Associated with Gastric Cancer Risk: Evidence from a Case-control Study and a Meta-analysis

  • Hu, Wei-Guo;Hu, Jia-Jia;Cai, Wei;Zheng, Min-Hua;Zang, Lu;Wang, Zheng-Ting;Zhu, Zheng-Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2363-2367
    • /
    • 2014
  • The association between the NAD(P)H:quinone oxidoreductase 1 (NQO1) gene C609T polymorphism (rs1800566) and gastric cancer has been widely evaluated, but a definitive answer is so far lacking. We first conducted a case-control study to assess this association in a large Han Chinese population, and then performed a meta-analysis to further address this issue. Although our case-control association study indicated no significant difference in the genotype and allele distributions of C609T polymorphism between gastric cancer patients and controls, in the meta analysis involving 4,000 subjects, comparison of alleles 609T and 609C indicated a significantly increased risk (46%) for gastric cancer (95% confidence interval (95%CI) for odds ratio (OR)=1.20-1.79) in individuals with the T allele. The tendency was similar to the homozygote (OR=1.81, 95%CI: 1.16-2.84), dominant models (OR=1.41, 95%CI: 1.12-1.79), as well as recessive model (OR=1.58, 95%CI: 1.06-2.35). Stratified analysis by study design demonstrated stronger associations in population-based than in hospital-based studies. And ethnicity-based analysis demonstrated a significant association in Asians. We conclude that the NQO1 gene C609T polymorphism increases the risk for gastric cancer, especially in Asian populations.

Screening of Quinone Reductase Inducers from Agricultural Byproducts Using Mouse Hepatoma Cell Line (Mouse hepatoma 세포를 이용한 농산부산물로부터 quinone reductase활성물질의 탐색)

  • Kim, Jong-Sang;Nam, Young-Jung;Kim, Joo-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.972-977
    • /
    • 1995
  • The induction of phase II enzymes including quinone reductase [NAD(P)H dehydrogenase(quinone): NAD(P)H : (quinone acceptor) oxidoreductase, EC 1.6.99.2] is a major mechanism of whereby a large group of heterogeneous compounds prevent the toxic, mutagenic, and neoplastic effects of carcinogen. Using murine hepatoma cells(Hepalclc7 cells), quinone reductase(QR) inducers as the possible chemopreventive agents were screened from rice bran, wheat bran, soymilk residue, defatted soybean cake, defatted sesame and perilla residues. The 80% methanol extracts of defatted sesame and perilla residues induced quinone reductase significantly while the others did have little effect on the enzyme induction. Thin layer chromatography of the extracts showed that the fastest moving band(Rf=0.70) in the developing solvent of n-butanol : n-propanol : 2N ammonia(10 : 60 : 30) was responsible for the enzyme induction by the 80% methanol extracts of defatted sesame and perilla residues. Further identification of active component(s) is in progress.

  • PDF

Induction of Anticarcinogenic Enzymes by Dichloromethane-soluble Fraction of Physalis alkekengi var. francheti Hort. in Mouse Hepatoma Cells

  • Seo, JiYeon;Kim, Hyo Jung;Kim, Jong-Sang
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.119-124
    • /
    • 2014
  • Physalis alkekengi var. francheti Hort. is known as an insecticide and traditional remedy for liver related diseases. Therefore, this study investigated the chemopreventive effects of extracts and several solvent fractions (n-hexane, dichloromethane, n-butanol, water) of Physalis alkekengi var. francheti Hort. First, their cytotoxicity and NQO1 activity were measured using an MTT assay, plus a quinone reductase [NAD(P)H dehydrogenase (quinone); NAD(P)H: (quinone acceptor) oxidoreductase, EC 1.6.99.2]-inducing activity assay was performed using cultured murine hepatoma cells (Hepa1c1c7) and its mutant cells(BpRc1). The reduction of electrophilic quinones by NQO1 is an important detoxification pathway and major mechanism of chemoprevention. When compared with the other solvent soluble fractions with different polarities, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. showed a higher NQO1-inducing activity that was also dose-dependent. Moreover, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. induced ARE-luciferase activities in HepG2-C8 cells that were generated by transfecting the ARE-luciferase gene construct, suggesting the Nrf2-ARE-mediated induction of anti-oxidative enzymes. In conclusion, the dichloromethane-soluble fraction of Physalis alkekengi var. francheti Hort. showed a relatively strong induction of detoxifying enzymes, thereby meriting further study to identify the active components and evaluate their potential as cancer preventive agents.

The Review of Metabolic Acidosis During Exercise (운동 시 대사적 산성화에 관한 고찰)

  • Yoon, Byung-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1433-1441
    • /
    • 2018
  • The development of acidosis during intense exercise has traditionally been explained by the increased production of lactic acid which causes the release of a proton and the formation of the acid salt sodium lactate. Through this explanation, when the rate of lactate production is high enough to exceed cellular proton buffering capacity, cellular pH is decreased. This biochemical process has been termed lactic acidosis. This belief has been an interpretation that lactate production causes acidosis and fatigue during intense exercise. However, this review provides clear evidence that there is no biochemical support for lactate production causing acidosis and fatigue. Metabolic acidosis is caused by an increased reliance on nonmitochondrial ATP turnover. Lactate production is essential for muscle to produce cytosolic $NAD^+$ to support continued ATP regeneration from glycolysis. In addition, Lactate production consumes protons. Although lactate accumulation can be a good indirect indicator for decreased cellular and blood pH, that is not direct causing acidosis.

Anti-inflammatory effect of Porphyra yezoensis ethanol extract through the inhibited NF-κB and JNK activation in LPS-PG stimulated HGF-1 cells (사람 치은섬유모세포에서 NF-κB와 JNK 활성 억제를 통한 돌김 에탄올 추출물의 항염증 효과)

  • Park, Chung-Mu;Yoon, Hyun-Seo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.81-88
    • /
    • 2018
  • Human gingival fibroblast (HGF) is the main cell type existed in periodontium and produces a variety of inflammatory mediators by external stimuli. In this study, the anti-inflammatory activity of Porphyra yezoensis ethanol extract (PYEE) on LPS-PG lipopolysaccharide from Porphyromonas gingivalis activated HGF-1 cell. Up-regulated iNOS and COX-2 expressions by LPS-PG were significantly attenuated by PYEE treatment in a dose-dependent manner. In addition, activated nuclear factor $(NF)-{\kappa}B$ was also dose-dependently inhibited by PYEE treatment. Among upstream signaling molecules, PYEE treatment inhibited phosphorylation of c-Jun $NH_2$-terminal kinase (JNK) but did not give any effect on other molecules. On the other hand, one of phase II enzymes, NAD(P)H:quinone dehydrogenase (NQO)-1, was analyzed due to its anti-inflammatory activity, which was upregulated by PYEE treatment. Consequently, PYEE could be candidates for the prevention and treatment of periodontal diseases.

NAD Glycohydrolase Activity in Patients of Tuberculosis (결핵환자에서 NAD Glycohydrolase Activity에 관한 연구)

  • Seo, Jae-Seok;Lee, Yong-Chul;Rhee, Yang-Keun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.489-493
    • /
    • 1994
  • Background: Nicotinamide adenine dinucleotide glycohydrolase(NADase) is located on the surface of the cells. It is bound by glycosylphosphatidylinositol(GPI)-linkage, which can be cleaved by bacterial PI-specific phospholipase C(PI-PLC). Recently, it was studied that NADase was increased in infected tuberculosis animal, but absolute NADase is uncertainly increased because of high NADase in Mycobacterium tuberculosis. Therefore, we studied pure NADase activity in red blood cells of normal person and patients of tuberculosis. Method: We evaluated the 19 healthy adults and 16 tuberculosis infected patients, and then, the latter cases were evaluated after 3 months antituberculosis therapy. NADase activity was calculated by scintillated counting of cleaved radioactive [carbonyl-$^3H$] nicotinamide Result: NADase activity was $2021.1{\pm}824.0\;pmol/min/10^6$ erythrocytes in healthy adults vs. $3339.0{\pm}1568.0$ in tuberculosis infected patients, and was $3339.0{\pm}1568.0$ in pretreated patients vs. $2238.6{\pm}1013.1$ in same 3 months treated patients. Conclusion: NADase activity of erythrocytes is elevated in tuberculosis infection, and normalized afer antituberculosis therapy. Therefore, we suggested NADase activity as the new diagnostic and therapeutic indicator.

  • PDF