• 제목/요약/키워드: N4 receptor

검색결과 536건 처리시간 0.028초

Bacteriophage N4의 receptor에 대한 연구 (Studies on the receptor for bacteriophage N4 infection)

  • 채건상;김선정;김창수;유욱준
    • 미생물학회지
    • /
    • 제25권1호
    • /
    • pp.52-56
    • /
    • 1987
  • The evidences that Lam B protein of E. coli is used as a receptor for infections of bacteriophage N4 as well as bacteriophage lambda were obtained from the following experimental results. First, all of the isolated lambda resistant dlones possessing foreign DNA fragments in the plasmids were also resistant to bacteriophage N4, but not to bacteriophage $\phi$ 80, T4 and T7. Second, when the plasmid DNA was treated with various restriction enzymes and ligated to delete the total or a portion of the foreign DNA fragments, the deleted plasmids lost the resistant activities to lambda and N4, simultaneously. Third, after amplification of Lam B protein about 200 times by inducing the protein using maltose as a sole carbon source, the host E. coli became sensitive to both lambda and N4.

  • PDF

A New Acetate Selective Polyamine Receptor Based on Anthracene and 4-Nitrophenyl Group

  • Lee, Sung-Kyu;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1228-1230
    • /
    • 2011
  • A new amine receptor 2 utilizing anthracene and nitrophenyl group as signaling group was designed and synthesized. The receptor 2 only utilizes four amine N-H's and 9-anthracenyl hydrogen to bind anions. The receptor 2 can bind anions through hydrogen bonds with a selectivity of $CH_3CO_2^-$ > $H_2PO_4^-$ > $F^-$ > $C_6H_5CO_2^-$ > $Cl^-$ in highly polar solvent such as DMSO without protonation of amine.

Influence of 5′-(N′-Ethylcarboxanlido) Adenosine on Catecholarnine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Oh, Hyeong-Geun;Woo, Seong-Chang
    • Biomolecules & Therapeutics
    • /
    • 제8권4호
    • /
    • pp.338-348
    • /
    • 2000
  • The present study was attempted to determine the effect of 5'-(N'-ethylcarboxamido) adenosine (NECA), which is an potent $A_2$-adenosine receptor agonist, on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. NECA (20 nM) perfused into the adrenal vein for 60 min produced a time-related inhibition in CA secretion evoked by ACh (5.32x10$^{-3}$ M), high $K^{+}$(5.6x10$^{-2}$ M), DMPP (10$^{-4}$ M for 2 min), McN-A-343 (10$^{-4}$ M for 2 min), cyclopiazonic acid (10$^{-5}$ M for 4 min) and Bay-K-8644 (10$^{-5}$ M for 4 min). Also, in the presence of $\beta$,${\gamma}$-methylene adenosine-5'-triphosphate (MATP), which is also known to be a selective $P_{2x}$-purinergic receptor agonist, showed a similar inhibition elf CA release evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. However, in adrenal glands preloaded with 20$\mu$M NECA for 20 min under the presence of 20$\mu$M 3-isobutyl-1-methyl-xanthine (IBMX), an adenosine receptors antagonist, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were much recovered in comparison to the case of NECA-treatment only. Taken together, these results indicate that NECA causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. This inhibitory effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells through the adenosine receptor stimulation. Therefore, it is suggested that the inhibitory mechanism of adenosine receptor stimulation may play a modulatory role in regulating CA secretion.n.n.

  • PDF

소 부신수질 Muscarine 수용체의 성질 (Properties of Muscarinic Receptor in Bovine Adrenal Medulla)

  • 이신웅;이해태
    • Biomolecules & Therapeutics
    • /
    • 제2권4호
    • /
    • pp.361-368
    • /
    • 1994
  • The nature of the muscarinic receptors in bovine adrenal medulla was investigated in this study. [$^3$H]Quinuclidinyl benzilate(QNB) specifically bound to a single class of muscarinic receptor with a $K_{D}$ value of about 70 pM in bovine adrenal medullary, cardiac ventricular and ileal homogenates. Pirenzepine inhibition curves of [$^3$H]QNB binding to cardiac ventricular and ileal homogenates were steep, indicating the presence of a single class of binding site for pirenzepine with a Ki value of 990 nM and 508 nM, respectively. However, pirenzepine/[$^3$H]QNB competition binding curves in adrenal medulla suggested the presence of two binding sites (Hill coefficient=0.59) with a high( $M_1$) and a low( $M_2$) affinity. Respective Ki values for pirenfepine were 16 nM and 633 nM, with 44% of total sites having a high affinity( $M_1$). Gallamine, which is selective to cardiac $M_2$-receptor, inhibited [$^3$H]QNB binding to adrenal medullary, cardiac ventricular and ileal homogenates with Ki values of 12 $\mu$M, 6 $\mu$M and 13 $\mu$M, respectively. Thus, the binding affinities of pirenzepine and gallamine for $M_2$-receptor in adrenal medulla were similar to those in ileum, which contains the $M_3$-receptor. These results indicate that the $M_1$- and $M_3$- muscarinic receptor subtypes coexist in the bovine adrenal medulla.a.

  • PDF

Dihydropyridine계 칼슘 Channel효능제 및 길항제가 Muscarinic Receptor에 미치는 영향

  • 이신웅;박영주;이해태;장태수
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1992년도 제1회 신약개발 연구발표회 초록집
    • /
    • pp.45-45
    • /
    • 1992
  • Calcium channel에 작용하는 dihydropyridine(DHP) 계열의 calcium channel 효능제와 길항제의 caicium channel에 대한 작용과 muscarinic receptor에 대한 작용과의 관계를 조사하기 위하여 [$^3$H]QNB와 [$^3$H]nitrendipine 결합실험을 시행하고 이를 지표로 하여 칼슘효능제와 길항제의 이들 receptors에 대한 결합성질을 검토하였다. 본 연구결과 칼슘 channel 효능제인 Bay K 8644는 칼슘길항제인 nicardipine 및 nimodipine과 같이 고농도에서 muscarinic receptor에 대한 [$^3$H]QNB결합을 경쟁적으로 억제하였으며 이들 약물의 muscarinic receptor에 대한 Ki치는 각각 16.7 $\mu$M, 3.5 $\mu$M, 및 15.5 $\mu$M이었다. 한편, 이들 약물은 다같이 칼슘 channel의 high affinity DHP결합부위에 대한 [$^3$H]nitrendipine 결합을 억제하였으나 이 부위에 대한 Bay K 8644, nicardipine, 및 nimodipine의 Ki치는 각각 4 nM, 0.1 nM, 및 0.2 nM로서 muscarinic receptor에 대한 Ki치 보다 4,000-75,000배 작았다. 뿐만 아니라 [$^3$H]QNB결합을 완전히 차단하는 고농도의 atropine(1 $\mu$M)에 의해서도 [$^3$H]nitrendipine결합이 전혀 영향을 받지 않았다. 따라서 DHP계 약물의 muscarinic receptor에 대한 작용은 칼슘channel에 대한 이들 약물의 작용을 연구하거나 임상적 치료 목적으로 사용할때는 나타나지 않을 것으로 생각된다.

  • PDF

Discovery and Functional Study of a Novel Genomic Locus Homologous to Bα-Mating-Type Sublocus of Lentinula edodes

  • Lee, Yun Jin;Kim, Eunbi;Eom, Hyerang;Yang, Seong-Hyeok;Choi, Yeon Jae;Ro, Hyeon-Su
    • Mycobiology
    • /
    • 제49권6호
    • /
    • pp.582-588
    • /
    • 2021
  • The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of Bα and Bβ subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the Bα sublocus, but unlike the multiallelic Bα sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.

Plasma concentration of dopamine varies depending on breed, sex, and the genotype of DRD4 in horses

  • Junyoung, Kim;Heejun, Jung;Jae-Young, Choi;Jang-Won, Lee;Minjung, Yoon
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.792-799
    • /
    • 2022
  • Dopamine (DA) is known to be a key modulator of animal behaviors. Thus, the plasma concentration of DA might be used as a biomarker for the behavioral characteristics of horses. The behavioral characteristics of horses vary depending on the breed, age, and sex. Moreover, the DA receptor genotypes are also related to horse behaviors. Thus, the aim of this study was to investigate the DA concentration variations of horse plasma by breed, age, sex, or genotype of its receptor. The horses were divided by breed into Thoroughbred (n = 13), Pony (n = 9), Warmblood (n = 4), and Haflinger (n = 5). The age variable was divided into three different groups: post-pubertal (2-5 years, n = 6), adult (6-13 years, n = 19), and aged horses (15-24 years, n = 6). The sex variable was divided into geldings (n = 8) and mares (n = 23). Approximately 10 mL of blood was collected, and an ELISA kit was used to measure the plasma concentration of DA. Polymerase chain reaction analysis was performed to identify the genetic variation in the DA D4 receptor gene (DRD4). SPSS statistical software was used for statistical analysis. The DA concentrations in geldings were significantly lower than those in mares. There was no significant difference in DA concentrations among breed and age groups. Horses with the GG and GA genotypes had significantly higher plasma concentrations of DA compared to horses with the AA genotype for the G292A gene. Briefly, the plasma concentration of DA varied depending on the sex and genotype of G292A. These factors should be considered when the concentration of DA is used as a biomarker for the behavioral characteristics of horses. In conclusion, the DA concentration or DRD4 genotype of horse plasma has the potential to be used as a biomarker that can predict the behavioral characteristics of horses.

Dihydrogen Phosphate Selective Anion Receptor Based on Acylhydrazone

  • Pandian, T. Senthil;Kang, Jongmin
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2025-2028
    • /
    • 2014
  • Anion receptor 1 based on acylhydrazone has been designed and synthesized. UV-vis and $^1H$ NMR titration showed that receptor 1 is selective receptor for dihydrogen phosphate ($H_2PO_4{^-}$). Dihydrogen phosphate was complexed by the receptor 1 via at least 4 hydrogen bonding interactions, contributing from two amide N-Hs and two imine C-Hs. In addition, nitrogen in the aromatic ring could make 2 additional hydrogen bondings with OH groups in the dihydrogen phosphate. However, the receptor 1 could make only 4 hydrogen bonds with halides. Therefore, receptor 1 could bind anions through hydrogen bonds with a selectivity in the order of $H_2PO_4{^-}$ > $Br^-$ > $Cl^-$ in highly polar solvent such as DMSO.

The Regulatory Mechanism of Cerebral Blood How of Adenosine A2 Receptor Agonist in the Rats

  • Kang, Hyung-Kil;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • 제12권2호
    • /
    • pp.68-73
    • /
    • 2004
  • This study was performed to investigate the regulatory mechanism of cerebral blood How of adenosine $A_2$ receptor agonist in the rats, and to define whether its mechanism is mediated by nitric oxide (NO), adenylate cyclase and guanylate cyclase. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebal cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine $A_2$ receptor agonist [5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA; 4 umol/l)] increased cerebral blood flow. This effect of CPCA (4 umol/l) was blocked by pretreatment with NO synthase inhibitor [$N^G$-nitro-L-argine methylester (L-NAME; 140 umol/l)] and adenylate cyclase inhibitor [MDL-12,330 (20 umol/l)]. But the effect of CPCA (4 umol/l) was not blocked by pretreatment with guanylate cyclase inhibitor [LY-83,583 (10 umol/l)]. These results suggest that adenosine $A_2$ receptor increases cerebral blood How. It seems that this action of adenosine $A_2$ receptor is mediated via the NO and the activation of adenylate cyclase in the cerebral cortex of the rats.

Dopamine $D_2$Receptor 효능제인 TNPA의 중추적 항이뇨작용 기전 (Mechanism of Central Antidiuretic Action Induced by TNPA, Dopamine $D_2$Receptor Agonist, in Dogs)

  • 고석태;황명성
    • 약학회지
    • /
    • 제45권4호
    • /
    • pp.397-406
    • /
    • 2001
  • It has been demonstrated previously that R(-)-2,10,11-trihydroxy-N-n-propylnora porphine (TNPA), a dopamine D$_2$receptor agonist, produced the antidiuresis through changes of central friction in dog. This study was investigated about effects of renal denervation and raclopride, a dopamine D$_2$receptor antagonist, on the antidiuresis of TNPA in order to elicidate the mechanism involved in this central antidiuresis induced by TNPA. Antidiresis exhibited by TNPA given into the vein or into carotid artery was not influenced by renal denervation, whereas antidiuresis of TNPA administered into carotid artery was blocked almost perfectly by raclopride pretreated into carotid artery. From these observations it is concluded that central antidiuresis induced by TNPA is brought about through activation of dopamine D$_2$receptor localized in brain, not related to renal nerve activity.

  • PDF