• Title/Summary/Keyword: N2a neuroblastoma

Search Result 81, Processing Time 0.033 seconds

Ginsenoside Rg3 from Red Ginseng Prevents Damage of Neuronal Cells through the Phosphorylation of the Cell Survival Protein Akt

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Yong-Jin;Hwang, Kwang-Woo;Lee, Seon-Gu;Yoo, Yeong-Min;Lee, Do-Ik
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.244-247
    • /
    • 2006
  • Neuronal cell death significantly contributes to neuronal loss in neurological injury and disease. Typically, neuronal loss or destruction upon exposure to neurotoxins, oxidative stress, or DNA damage causes neurodegenerative diseases such as Alzheimer's disease. In this study, we attempted to determine whether ginsenoside Rg3 from red ginseng has a neuroprotective effect via an anti-apoptotic role induced by S-nitroso-N-acetylpenicillamine (SNAP) at the molecular level. We also investigated the antioxidant effect of Rg3 using a metal-catalyzed reaction with $Cu^{2+}/H_2O_2$. Our results showed that Rg3 ($40-100\;{\mu}g/mL$) protected SK-N-MC neuroblastoma cells under cytotoxic conditions and effectively protected DNA from fragmentation. In the signal pathway, caspase-3, and poly (ADP-ribose) polymerase (PARP) were kept at an inactivated status when pretreated with Rg3 in all ranges. In particular, the important upstream p-Akt signal pathway was increased in a dose-dependent manner, which indicates that Rg3 may contribute to cell survival. We also found that oxidative stress can be mitigated by Rg3. Therefore, we have concluded that Rg3 plays a certain role in neurodegenerative pathogenesis via an anti apoptotic, antioxidative effect.

R3V6 Amphiphilic Peptide with High Mobility Group Box 1A Domain as an Efficient Carrier for Gene Delivery

  • Ryu, Jaehwan;Jeon, Pureum;Lee, Minhyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3665-3670
    • /
    • 2013
  • The R3V6 peptide includes a hydrophilic arginine stretch and a hydrophobic valine stretch. In previous studies, the R3V6 peptide was evaluated as a gene carrier and was found to have low cytotoxicity. However, the transfection efficiency of R3V6 was lower than that of poly-L-lysine (PLL) in N2A neuroblastoma cells. In this study, the transfection efficiency of R3V6 was improved in combination with high mobility group box 1A domain (HMGA). HMGA is originated from the nuclear protein and has many positively-charged amino acids. Therefore, HMGA binds to DNA via charge interaction. In addition, HMGA has a nuclear localization signal peptide and may increase the delivery efficiency of DNA into the nucleus. The ternary complex with HMGA, R3V6, and DNA was prepared and evaluated as a gene carrier. First, the HMGA/DNA complex was prepared with a negative surface charge. Then, R3V6 was added to the complex to coat the negative charges of the HMGA/DNA complex, forming the ternary complex of HMGA, R3V6, and DNA. A physical characterization study showed that the ternary complex was more stable than the PLL/DNA complex. The HMGA/R3V6/DNA complex had a higher transfection efficiency than the PLL/DNA, HMGA/DNA, or R3V6/DNA complexes in N2A cells. Furthermore, the HMGA/R3V6/DNA complex was not toxic to cells. Therefore, the HMGA/R3V6/DNA complex may be a useful gene delivery carrier.

Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism

  • Anil Kumar, D;Natarajan, Sumathi;Omar, Nabil A M Bin;Singh, Preeti;Bhimani, Rohan;Singh, Surya Satyanarayana
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.267-279
    • /
    • 2018
  • Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). ${\beta}$-N-Oxalyl-L-${\alpha},{\beta}$-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at $200{\mu}M$ L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of L-ODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.

DNA Repair Characteristics of MRC-5 and SK-N-SH Irradiated with Proton Beam (양성자빔 조사에 따른 MRC-5와 SK-N-SH의 DNA 손상 후 회복 특성)

  • Choi, Eun-Ae;Lee, Bong-Soo;Cho, Young-Ho
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • The purpose of this study is to compare DNA repair characteristics of normal fibroblast cell (MRC-5) and neuroblastoma cell (SK-N-SH) induced by proton beam. Cells were irradiated with 2Gy, 5Gy and 8Gy proton beam. The rate of DNA rejoining was measured by alkaline version of the comet assay. After a repair time, tail moment was measured again. The tail moment of MRC-5 was lower than SK-N-SH. However, after 8Gy of exposure, the tail moment of MRC-5 was measured as 50.320223.17155 which represents dangerous level of DNA damage. The cells were repaired practically within 25 hours after 2 and 5Gy of exposure while they were not fully recovered after 8Gy of exposure. Especially, tail moment of MRC-5 after 25 hours was 18.15364.42849. In the distal declining edge of SOBP, the RBE value is increased by high LET. The RBE differences of SOBP in high-dose were greater than low-dose. After the high-dose exposure, MRC-5 of normal fibroblast cell could lead to lasting DNA damage as shown in this study. In conclusion, we has to pay special attention when the region of the treatment volume is close to sensitive tissues.

Neuroprotective Effects of Bread Containing Cirsium setidens or Aster scaber (곤드레 또는 참취를 함유한 빵의 뇌신경 보호효과)

  • Kwon, Ki Han;Lim, Heekyung;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.829-835
    • /
    • 2014
  • This study investigated the neuroprotective effects of bread containing extract from Cirsium setidens (CS) or Aster scaber (AS) against $H_2O_2$-induced death of human brain neuroblastoma SK-N-SH cells. Treatment with bread containing extract from CS (CSB) or AS (ASB) reduced $H_2O_2$ cytotoxicity in SK-N-SH cells, the intracellular ROS level, and the phospho-p38 mitogen-activated protein kinase (MAPK) level. In the sensory evaluation, wild vegetable flavor scores of CSB were higher than those of ASB and bread containing 0% CS or AS (NB). In terms of appearance, color, flavor, softness, and overall acceptability, CSB and ASB showed higher scores than NB, but no differences were observed between CSB and ASB. These results indicate that CSB and ASB have potent health benefits in terms of neuroprotection against oxidative stress mediated through antioxidant activity and inhibition of p38 phosphorylation in brain neural cells. Thus, CS and AS could be considered as a health functional material.

Effects of Ionizing Radiation and Cisplatin on Peroxiredoxin I & II Expression and Survival Rate in Human Neuroblastoma and Rat Fibroblast Cells (전리방사선과 Cisplatin이 신경아세포종세포와 섬유모세포에서 Peroxiredoxin I과 II 발현 및 세포생존율에 미치는 영향)

  • Kim, Sung-Hwan;Yoon, Sei-Chul
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.272-279
    • /
    • 2006
  • $\underline{Purpose}$: This study investigated the influence of irradiation and cisplatin on PrxI & PrxII expression and on their survival rates (SR) in SK-N-BE2C and Rat2 cell lines. $\underline{Materials\;and\;Methods}$: The amount of PrxI & PrxII production with or without N-acetyl-L-cysteine (NAC) pretreatment was studied using a western blot after 20 Gy irradiation to determine the degree of inhibition of ROS accumulation. In addition, the amount of PrxI & PrxII production after cisplatin and after combination with cisplatin and 20 Gy irradiation was studied. The SRs of the cell lines in SK-N-BE2C and Rat 2 cells, applied with 20 Gy irradiation only, with various concentrations of cisplatin and with the combination of both, were studied. The 20 Gy irradiation-only group and the combination group were each subdivided according to NAC pretreatment, and corresponding SRs were observed at 2, 6, 12 and 48 hours after treatment. $\underline{Results}$: Compared with the control group, the amount of PrxI in SK-N-BE2C increased up to 60 minutes after irradiation and slightly increased after irradiation with NAC pretreatment 60 minutes. It did not increase in Rat2 after irradiation regardless of NAC pretreatment. PrxII in SK-N-BE2C and Rat2 was not increased after irradiation regardless of NAC pretreatment. The amounts of PrxI and PrxII in SK-N-BE2C and Rat2 were not increased either with the cisplatin-only treatment or the combination treatment with cisplatin and irradiation. SRs of irradiation group with or without NAC pretreatment and the combination group with or without NAC pretreatment were compared with each other in SK-N-BE2C and Rat2. SR was significantly high for the group with increased amount of PrxI, NAC pretreatment and lower the cisplatin concentration. SR of the group in SK-N-BE2C which had irradiation with NAC pretreatment tended to be slightly higher than the group who had irradiation without NAC pretreatment. SR of the group in Rat2 which had irradiation with NAC pretreatment was significantly higher than that the group which had irradiation without NAC pretreatment. Compared to the combination group, the irradiation-only group revealed statistically significant SR decrease with the maximal difference at 12 hours. However, at 48 hours the SR of the combination group was significantly lower than the irradiation-only group. $\underline{Conclusion}$: PrxI is suggested to be an antioxidant enzyme because the amount of PrxI was increased by irradiation but decreased pretreatment NAC, a known antioxidants. Furthermore, cisplatin may inhibit PrxI production which may lead to increase cytotoxicity of irradiation. The expression of PrxI may play an important role in cytotoxicity mechanism caused by irradiation and cisplatin.

Production of Lignin Peroxidase by Phellinus igniarius and Cytotoxic Effects of Lignin Hydrolysates Derived from Wood Biomass on Cancer Cells

  • Lee, Jae-Sung;Lee, Jong-Suk;Yoon, Jae-Don;Beak, Sung-Mok;Bosire, Kefa-O.;Lee, Yong-Soo;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.189-193
    • /
    • 2004
  • Over the past several years, research efforts have been directed both at economically producing valuable substances from the wood biomass and at producing lignolytic enzymes at a lower cost. In the present study, we found that Phellinus igniarius, the basidiomycetes, secreted lignin peroxidase as a main lignolytic enzyme, which was detected maximum activity at 16th day of culture and showed 37 kDa of molecular mass in identification by activity assay and purification by anion-exchange chromatography. The Phellinus igniarius-derived lignin peroxidase hydrolyzed steam-exploded wood (Quercus mongolica) powder into small molecules showing cytotoxicity against cancer cel1s (HepG2 hepatoma, SK-N-SH neuroblastoma, B16 melanoma, MBT-2 bladder cancer). In addition, the enzyme hydrlysates of lignins (ELg) that were extracted from the steam-exploded oak showed more potent cytotoxic effects on the cancer cells than the enzyme hydrolysates of wood biomass (EWp), indicating that the cytotoxic effect of EWp may be due to the enzyme-degraded products of lignin among the lignocellulosics. Furthermore, the cytotoxic effect of ELg on Chang, normal liver cells, was much less potent than that of ELg on HepG2 and B16 cancer cells, indicating that the cytotoxic effect of ELg may be specific for cancer cells. The present results suggest that Phellinus igniarius may be a useful resource for the large-scale production of lignin peroxidase and that the lignin peroxidase may be applied for the generation of valuable biodegradation products from wood lignocellulosics for medical use.

Antistress effect of red ginseng in brain cells is mediated by TACE repression via PADI4

  • Kim, Eun-Hye;Kim, In-Hye;Ha, Jung-Ah;Choi, Kwang-Tae;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.315-323
    • /
    • 2013
  • Ginseng is known to have antistress effects. Previously, red ginseng (RG) was shown to repress stress-induced peptidyl arginine deiminase type IV (PADI4) via estrogen receptor ${\beta}$ ($ER{\beta}$) in the brain, thus inhibiting brain cell apoptosis. Moreover, tumor necrosis factor (TNF)-${\alpha}$ plays a critical role in immobilization (IMO) stress. However, the signaling pathway of RG-mediated repressesion of inflammation is not completely understood. In this study, we determined how RG modulated gene expression in stressed brain cells. Since secretion of TNF-${\alpha}$ is modulated via TNF-${\alpha}$ converting enzyme (TACE) and nuclear factor (NF)-${\kappa}B$, we examined the inflammatory pathway in stressed brain cells. Immunohistochemistry revealed that TACE was induced by IMO stress, but RG repressed TACE induction. Moreover, PADI4 siRNA repressed TACE expression compared to the mock transfected control suggesting that PADI4 was required for TACE expression. A reporter assay also revealed that $H_2O_2$ oxidative stress induced NF-${\kappa}B$ in neuroblastoma SK-N-SH cells, however, RG pretreatment repressed NF-${\kappa}B$ induction. These findings were supported by significant induction of nitric oxide and reactive oxygen species (ROS) by oxidative stress, which could be repressed by RG administration. Taken together, RG appeared to repress stress-induced PADI4 via TACE and NF-${\kappa}B$ in brain cells thus preventing production of ROS and subsequently protecting brain cells from apoptosis.

Lack of Cytotoxicity of the Colorant in Conjugated Linoleic Acid against Human Cancer and Normal Cells (Conjugated linoleic acid 황갈색의 인체암세포와 인체정상세포에 대한 세포독성)

  • Ji, Yu-Chul;Ahn, Chae-Rin;Seo, Yang-Gon;Suh, Jeong-Se;Kim, Jeong-Ok;Ha, Yeong-Lae
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1099-1106
    • /
    • 2012
  • The cytotoxicity of the colorant in conjugated linoleic acid (CLA) was investigated in human cancer cell lines and a normal human cell line. Commercially-available CLA with a brown color (designate crude CLA; c-CLA) was distilled in a vacuum (10 mmHg-$220^{\circ}C$, 10 mmHg-$235^{\circ}C$, 10 mmHg-$240^{\circ}C$, and 20 mmHg-$260^{\circ}C$) for 30 min to obtain pure CLA (distilled CLA; d-CLA) and dark brown-colored CLA (residual CLA; r-CLA) samples. No color intensity was shown in the d-CLA sample obtained under 10 mmHg-$220^{\circ}C$ conditions of distillation when the L (brightness), a (red/blue), and b (yellow/green) parameters were analyzed, whereas the r-CLA sample showed a dark brown color. The composition of CLA isomers in both the d- and r-CLA samples, as compared to that of the c-CLA sample, was not significantly different when analyzed by gas chromatography. When the cytotoxicity of the r-CLA and d-CLA samples obtained under 10 mmHg-$220^{\circ}C$ conditions were compared against human breast cancer cells (MCF-7), human lung cancer cells (A-549), human colon cancer cells (HT-29), human prostate cancer cells (PC-3), and human neuroblastoma cells (SK-N-SH), no significant cytotoxicity was seen in the cell lines. These results suggest that the color or colorant in the CLA samples did not have any effects on the proliferation of human cancer and normal cells and imply that the colorant in commercially available CLA samples is safe for human consumption.

Effect of Coffee-like Green Tea Preparation on Cytotoxicity of Human Cancer and Normal Cells (Coffee-like green tea의 인체암세포 및 정상세포에 대한 독성)

  • Moon, Yean Guy;Kwon, Jung Min;Kim, Jong Cheol;Park, Han Min;Cho, Yong Un;Jung, Kwan Ju;Ha, Yeong Lea
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.84-94
    • /
    • 2013
  • The cytotoxicity of coffee-like green tea (CLGT) was determined in a human breast cancer cell line, MCF-7; a human prostate cancer cell clone, PC-3; a human neuroblastoma cell line, SK-N-SH; and a rat cardiomyoblast cell line, H9c2, with reference to green tea leaves (GTL). The CLGT was prepared by roasting the GTL for 60 min at $240^{\circ}C$ in a temperature-controlled frying pan. The CLGT preparation imitated the flavor and taste characteristics of coffee fairly well according to sensory analysis. The CLGT preparation had no adverse cytotoxic effects on the cancer cells or the normal cells compared to GTL. No significant change in the antioxidant activity was seen in the CLGT preparation compared to that of GTL. The amount of total protein, sugar, and phenolic compounds was reduced in the preparation relative to those in GTL, a fact that might explain the coffee-like flavor and/or taste characteristics of the CLGT preparation. These results suggest that CLGT prepared by roasting GTL for 60 min at $240^{\circ}C$ does not show any adverse effects on cancer cells and normal cells compared to GTL. They imply that CLGT could be safe for human consumption.