• Title/Summary/Keyword: N2a neuroblastoma

Search Result 81, Processing Time 0.033 seconds

Cytotoxic Activities of Panax ginseng and Euphorbia humifusa in Human Brain Tumor Cells (인삼 비당부와 땅빈대의 뇌암세포 독성작용)

  • Cha, Bae-Cheon;Kim, Jung-Ae;Lee, Yong-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.4
    • /
    • pp.350-353
    • /
    • 1996
  • The effects of acid hydrolysis product of Panax ginseng and MeOH extract of Euphorbia humifusa on the growth of human brain tumor cells were evaluated using U-373 MG human astrocytoma and SK-N-MC human neuroblastoma cells as model cellular systems. These plant extracts induced cytotoxicity in both cells in a dose-dependent manner. These cytotoxic effects were significantly inhibited by GSH, an antioxidant, in both cells. BAPTA/AM, an intracellular $Ca^{2+}$ chelator, significantly blocked the cytotoxic effects of these extracts in U-373 cells, but enhanced these effects in SK-N-MC cells. These results suggest that the plant extracts may be a valuable choice for the studies on the treatment of human brain tumors.

  • PDF

Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells

  • Seung Yeon Sohn;Thin Thin San;Junhyung Kim;Hyun-Jung Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.65-76
    • /
    • 2024
  • Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.

Differential Changes of ATP-sensitive Potassium Channel Current after Hypoxia-reperfusion Treatment in Mouse Neuroblastoma 2a (N2a) Cell

  • Park, Ji-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.4
    • /
    • pp.183-186
    • /
    • 2002
  • Ischemic damage is one of the most serious problems. The openers of KATP channel have been suggested to have an effect to limit the ischemic damage. However, it is not yet clear how KATP channels of a cell correspond to hypoxic damage. To address the question, N2a cells were exposed to two different hypoxic conditions as follows: 6 hours hypoxia followed by 3 hours reperfusion and 12 hours hypoxia followed by 3 hours reperfusion. As the results, 6 hours hypoxic treatment increased glibenclamide- sensitive basal $K_{ATP}$ current activity (approximately 6.5-fold at 0 mV test potential) when compared with nomoxic condition. In contrast, 12 hours hypoxic treatment induced a relatively smaller change in the $K_{ATP}$ current density (2.5-fold at 0 mV test potential). Additionally, in experiments where $K_{ATP}$ channels were opened using diazoxide, the hypoxia for 6 hours significantly increased the current density in comparison to control condition (p<0.001). Interestingly, the augmentation in the $K_{ATP}$ current density reduced after exposure to the 12 hours hypoxic condition (p<0.001). Taken together, these results suggest that $K_{ATP}$ channels appear to be recruited more in cells exposed to the 6 hours hypoxic condition and they may play a protective role against hypoxia-reperfusion damage within the time range.

Protective Effects of Sosokmyoung-tang Against Parkinson's Model in Human Neuroblastoma SH-SY5Y Cells (사람 신경모세포종 SH-SY5Y 세포주의 파킨슨 모델에 대한 소속명탕(小續命湯)의 보호효과)

  • Woo, Chan;You, Ju-Yeon;Jang, Chul-Yong;Kim, Hyo-Rin;Shin, Yong-Jeen;Moon, A-Ji;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.298-308
    • /
    • 2014
  • Objectives: In this study we made an effort to investigate the protective effect of SSMT on the N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -induced cytotoxicity of SH-SY5Y cells. Methods: The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MMT) assay. The fluorescence intensity was measured by using a dye and then with propidium iodide (PI) DNA flow cytometry analysis of the effects on the cell cycle of the SH-SY5Y cells and were used to measure the fluorescence of intracellular reactive oxygen species generation by MPTP. Results: Pretreatment of SSMT significantly suppressed MPTP-induced cytotoxicity, which was revealed as apoptosis characterized by the reduction of cell viability, the increase of ROS production, and the loss of mitochondrial membrane potential in SH-SY5Y cells. Conclusions: These findings suggest that SSMT exerts neuroprotective effects on human neuroblastoma SH-SY5Y cells by MPTP-induced dopaminergic neurodegeneration.

The antioxidative and neuroprotective effects of Bombusae concretio Salicea and phenolic compounds on neuronal cells (신경세포에서 천축황(天竺黃)과 페놀성 물질의 항산화 및 신경보호 효과)

  • Seo, Young-Jun;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.219-225
    • /
    • 2000
  • 산화적인 스트레스가 여러가지 신경 및 비신경계에서의 병리원인으로 알려져 있다. 퇴행성 뇌질환에 대한 예방과 치료에는 항산화 방어기술이 주요대상이며 스테로이드 분자중에서 estrogen만이 산화적인 원인에 의한 신경세포사를 방어하는데 특이적인 효과를 가지고 있다. 본 연구는 천축황(天竺黃)의 항산화적 뇌신경 보호기전을 연구하는 것으로 신경세포주, 뇌세포막, 이의 산화적 정량실험법을 사용하여 천축황(天竺黃)이 갖는 항산화 및 신경보호활성이 소수성 페놀(phenolic molecules)성 물질과 유사함을 밝히게 되었다. 즉, 페놀성 물질로서 2,4,6-trimethylphenol, N-acetylserotonin, 및 5-hydroxyindole와 유사한 뇌신경 보호활성을 나타내었으며 천축황(天竺黃)은 생쥐의 N2a cell과 사람 SK-N-MC neuroblastoma cell에서 산화적인 글루탐산 독성에 대하여 보호를 하였다. 천축황(天竺黃)의 산화적 글루탐산 독성에 대한 보호활성은 과산화수소에 대한 것과 유사하였다. 이러한 항산화 활성은 $20\;{\mu}g/ml$에서, LDL의 산화적 보호 활성은 $5\;{\mu}g/ml$농도에서 발휘되었다 (최대활성은 $16\;{\mu}g/ml$). 이러한 결과는 천축황(天竺黃)이 노인성 치매에 보호효과가 있음을 시사하였다.

  • PDF

Differential Expression of Protein Kinase C Subtypes during Ginsenoside Rh2-Induced Apoptosis in SK-N-BE(2) and C6Bu-1 Cells

  • Kim, Young-Sook;Jin, Sung-Ha;Lee, You-Hiu;Park, Jong-Dae;Kim, Shin-Il
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.518-524
    • /
    • 2000
  • We examined the modulation of protein kinase C (PKC) subtypes during apoptosis induced by ginsenoside Rh2 (G-Rh2) in human neuroblastoma SK-N-Bl(2) and rat glioma C6Bu-1 cells. Apoptosis induced by C-Rh2 in both cell lines was confirmed, as indicated by DNA fragmentation and in situ strand breaks, and characteristic morphological changes. During apoptosis induced by G-Rh2 in SK-N-BE(2) cells, PKC subtypes $\alpha$, $\beta$ and $\gamma$ were progressively increased with prolonged treatment, whereas PKC $\delta$ increased transiently at 3 and 6 h and PKC $\varepsilon$ was gradually down-regulated after 6 h following the treatment. On the other hand, PKC subtype $\beta$ markedly increased at 24 h when maximal apoptosis was achieved. In C6Bu-l cells, no significant changes in PKC subtypes $\alpha$, $\gamma$, $\delta$, $\varepsilon$ and $\beta$ were observed during apoptosis induced by G-Rh2. These results suggest the evidence for a possible role of PKC subtype in apoptosis induced by G-Rh2 in SK-N-BE(2) cells but not in C6Bu-1 cells, and raise the possibility that G-Rh2 may induce apoptosis via different pathways interacting with or without PKC in different cell types.

  • PDF

Outcome of patients with neuroblastoma aged less than 1 year at diagnosis (진단 시 1세 이하인 신경모세포종 환자의 치료성적)

  • Suh, Jung Min;Lee, Sang Goo;Yoo, Keon Hee;Sung, Ki Woong;Koo, Hong Hoe;Kim, Ju Youn;Cho, Eun Joo;Lee, Suk Koo;Kim, Jhingook;Lim, Do Hoon
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.1
    • /
    • pp.93-98
    • /
    • 2009
  • Purpose : The purpose of this study was to evaluate the clinical characteristics and outcomes of patients with neuroblastoma aged less than 1 year. Methods : From January 1997 to December 2007, 41 patients aged less than 1 year were diagnosed with neuroblastoma. Patients were divided into 3 risk groups according to the stage of the disease and N-myc amplification. Low-risk patients underwent surgery with (stage 2) or without (stage 1) short-term chemotherapy. Intermediate-risk patients underwent chemotherapy and surgery with or without local radiation therapy. High-risk patients underwent chemotherapy, surgery, radiation therapy, and high-dose chemotherapy/autologous stem cell rescue (HDCT/ASCR). Results : While tumor relapse occurred in only 1 patient, 7 patients died of treatment-related toxicities. Causes of treatment- related death included infection during conventional chemotherapy in 5 patients and acute myocarditis during HDCT/ASCR in 2 patients. The overall 5-year survival (${\pm}$ standard error) and 5-year event-free survival (EFS) rates after diagnosis for all 41 patients were $82.8{\pm}5.9%$ and $80.0{\pm}$6.3%$, respectively, with a median follow-up of 58 (9-137) months. The 5-year EFS rates for low-risk, intermediate-risk, and high-risk patients were 100%, $68.4{\pm}10.8%$, and $66.7{\pm}19.3%$, respectively. Conclusion : Increased efforts to reduce infection-associated toxicity deaths during conventional chemotherapy are needed to further improve the survival of patients with neuroblastoma aged less than 1 year.

Neuroprotective effects of some herbal medicine plant extract against ischemia·reperfusion-induced cell death in SK-N-SH neuronal cells (허혈·재관류 유도성 신경세포사멸에 대하여 신경보호효과를 가지는 약용식물 추출물의 검색)

  • Oh, Tae-Woo;Lee, Mi Young;Lee, Hye Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.28 no.2
    • /
    • pp.45-53
    • /
    • 2013
  • Objectives : The purpose of the study is to determine the neuroprotective effects of the water and 80% EtOH extract of some herbal medicine plant on ischemia reperfusion-induced cell death in SK-N-SH human brain neuronal cells. Methods : SK-N-SH cells were treated with 3mM sodium azide and 10 mM 2-deoxy-D-glucose for 45 min, ptior to the addition of different concentrations of herbal medicine plant extract (0, 10, 25, 50, 100, 250, 500, 1000 ${\mu}g/ml$) for 2 hr and then reperfused with growth medium, incubated for 24 h. Cell viability was determined by WST-1 assay, and ATP/ADP levels were measured by ADP/ATP ratio assay kit. Results : Herbal medicine plant extract significantly inhibited decreasing the cell viability in ischemia-induced SK-N-SH cells. Also increased the ratio of ADP/ATP in ischemia-induced neuronal cells. Conclusions : Our results suggest that herbal medicine plant extract has a neuroprotective property via increasing the energy levels in neuronal cells, suggesting that extract may has a therapeutic potential in the treatment of ischemic brain injury. The exact component and mechanism remains for the future study.

Anti-apoptotic Effects of Red Ginseng on Oxidative Stress Induced by Hydrogen Peroxide in SK-N-SH Cells

  • Kim, Eun-Hye;Lee, Mi-Jeong;Kim, In-Hye;Pyo, Suhk-Neung;Choi, Kwang-Tae;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.34 no.2
    • /
    • pp.138-144
    • /
    • 2010
  • Ginseng (Panax ginseng C.A. Meyer) has been shown to have anti-stress effects in animal studies. However, most studies have only managed to detect altered levels of biomarkers or enzymes in blood or tissue, and the actual molecular mechanisms by which ginseng exerts these effects remain unknown. In this study, the anti-oxidative effect of Korean red ginseng (KRG) was examined in human SK-N-SH neuroblastoma cells. Incubation of SK-N-SH cells with the oxidative stressor hydrogen peroxide resulted in significant induction of cell death. In contrast, pre-treatment of cells with KRG decreased cell death significantly. To elucidate underlying mechanisms by which KRG inhibited cell death, the expression of apoptosis-related proteins was examined by Western blot analysis. KRG pre-treatment decreased the expression of the pro-apoptotic gene caspase-3, whereas it increased expression of the anti-apoptotic gene Bcl-2. Consistent with this, immunoblot analysis showed that pre-treatment of the SK-N-SH cells with KRG inhibited expression of the pro-inflammatory gene cyclooxygenase 2 (COX-2). RT-PCR analysis revealed that the repression of COX-2 expression by KRG pre-treatment occurred at the mRNA level. Taken together, our data indicate that KRG can protect against oxidative stress-induced neuronal cell death by repressing genes that mediate apoptosis and inflammation.

Neuroprotective effects of Angelicae Acutilobae Radix water extract against ischemia·reperfusion-induced apoptosis in SK-N-SH neuronal cells (허혈·재관류 유도 신경세포사멸에 대한 일당귀 물추출물의 신경보호효과 연구)

  • Oh, Tae-Woo;Park, Ki-Ho;Lee, Mi-Young;Choi, Go-Ya;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.67-74
    • /
    • 2011
  • Objectives : The purpose of the study is to determine the neuroprotective effects of the water extract of Angelicae Acutilobae Radix(AA) on ischemia reperfusion-induced apoptosis in SK-N-SH human brain neuronal cells. Methods: SK-N-SH cells were treated with different concentrations of AA water extract (0.1, 0.2, 0.5 and 1.0 mg/ml) for 2 hr and then stimulated with Dulbecco's phosphate-buffered saline containing CI-DPBS: 3mM sodium azide and 10 mM 2-deoxy-D-glucose for 45 min, reperfused with growth medium, and incubated for 24 h. Cell viability was determined by WST-1 assay, and ATP/ADP levels were measured by ADP/ATP ratio assay kit. The levels of caspase-3 protein were determined by Western blot and apoptotic body was observed by Hoechst 33258 staining. Results : AA extract significantly inhibited decreasing the cell viability in ischemia-induced SK-N-SH cells. AA also increased the ratio of ADP/ATP in ischemia-induced neuronal cells and decreased the expression levels of apoptotic protein, caspase-3 and apoptotic DNA damage. Conclusions : Our results suggest that AA extract has a neuroprotective property via suppressing the apoptosis and increasing the energy levels in neuronal cells, suggesting that AA extract may has a therapeutic potential in the treatment of ischemic brain injury.