• Title/Summary/Keyword: N-transform

Search Result 714, Processing Time 0.026 seconds

The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements

  • Barutcigil, Kubilay;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • PURPOSE. The aim of the present study was to determine the degree of conversion of light- and dual-cured resin cements used in the cementation of all-ceramic restorations under different thicknesses of translucent (T) and high-translucent (HT) polymer-infiltrated ceramic-network (PICN) material. MATERIALS AND METHODS. T and HT PICN blocks were prepared at 0.5, 1.0, 1.5, and 2.0 mm thicknesses (n=80). Resin cement samples were prepared with a diameter of 6 mm and a thickness of 100 ㎛. Light-cured resin cement was polymerized for 30 seconds, and dual-cure resin cement was polymerized for 20 seconds (n=180). Fourier transform infrared spectroscopy (FTIR) was used for degree of conversion measurements. The obtained data were analyzed with ANOVA and Tukey HSD, and independent t-test. RESULTS. As a result of FTIR analysis, the degree of conversion of the light-cured resin cement prepared under 1.5- and 2.0-mm-thick T and HT ceramics was found to be lower than that of the control group. Regarding the degree of conversion of the dual-cured resin cement group, there was no significant difference from the control group. CONCLUSION. Within the limitation of present study, it can be concluded that using of dual cure resin cement can be suggested for cementation of PICN material, especially for thicknesses of 1.5 mm and above.

The study of SiON thin film for optical properlies (SiON 박막의 광학적 특성에 대한 연구)

  • 김도형;임기주;김기현;김현석;김상식;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.247-250
    • /
    • 2001
  • We studied optical properties of SiON thin-film in the applications of optical waveguide. SiON thin-film was grown in 300$^{\circ}C$ by PECVD(plasma enhanced chemical vapor deposition) system. The change of SiON thin-film composition and refractive Index was studied as a function of varying NH$_3$ gas flow rate. As NH$_3$ gas flow rate was increased, Quantity of N and refractive index were increased at the same time. By the results, we could form the SiON thin-film to use of a waveguide with refractive index of 1.6. We analyzed the conditions of the thin-film with FTIR(fourier transform infrared) and OES(optical emission spectroscopy). N-H bonding(3390cm$\^$-1/) can be removed by thermal annealing. And we could observe the SiH bonding state and quantity by OES analysis in SiH$_4$

  • PDF

Effects of Input Harmonics, DC Offset and Step Changes of the Fundamental Component on Single-Phase EPLL and Elimination

  • Luo, Linsong;Tian, Huixin;Wu, Fengjiang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1085-1092
    • /
    • 2015
  • In this paper, the expressions of the estimated information of a single-phase enhanced phase-locked loop (EPLL), when input signal contains harmonics and a DC offset while the fundamental component takes step changes, are derived. The theoretical analysis results indicate that in the estimated information, the nth-order harmonics cause n+1th-order periodic ripples, and the DC offset causes a periodic ripple at the fundamental frequency. Step changes of the amplitude, phase angle and frequency of the fundamental component cause a transient periodic ripple at twice the frequency. These periodic ripples deteriorate the performance of the EPLL. A hybrid filter based EPLL (HF-EPLL) is proposed to eliminate these periodic ripples. A delay signal cancellation filter is set at the input of the EPLL to cancel the DC offset and even-order harmonics. A sliding Goertzel transform-based filter is introduced into the amplitude estimation loop and frequency estimation loop to eliminate the periodic ripples caused by the residual input odd-order harmonics and step change of the input fundamental component. The parameter design rules of the two filters are discussed in detail. Experimental waveforms of both the conventional EPLL and the proposed HF-EPLL are given and compared with each other to verify the theoretical analysis and advantages of the proposed HF-EPLL.

Basis Function Truncation Effect of the Gabor Cosine and Sine Transform (Gabor 코사인과 사인 변환의 기저함수 절단 효과)

  • Lee, Juck-Sik
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.303-308
    • /
    • 2004
  • The Gabor cosine and sine transform can be applied to image and video compression algorithm by representing image frequency components locally The computational complexity of forward and inverse matrix transforms used in the compression and decompression requires O($N^3$)operations. In this paper, the length of basis functions is truncated to produce a sparse basis matrix, and the computational burden of transforms reduces to deal with image compression and reconstruction in a real-time processing. As the length of basis functions is decreased, the truncation effects to the energy of basis functions are examined and the change in various Qualify measures is evaluated. Experiment results show that 11 times fewer multiplication/addition operations are achieved with less than 1% performance change.

Effect of nitrogen concentration on the microstructures of AlN thin films fabricated by reactive RF sputtering (반응성 RF 마그네트론 스퍼터링으로 증착한 AlN 박막의 특성에 질소농도 변화가 미치는 영향)

  • Lim, Dong-Ki;Kim, Byoung-Kyun;Jeong, S.W.;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.367-367
    • /
    • 2008
  • Aluminum nitride (AlN) thin films have been deposited on Si substrate by using reactive RF magnetron sputtering method in a gas mixture of Ar and $N_2$ at different $N_2$ concentration. It was found that $N_2$ concentration was varied in the range up to 20-100%, highly c-axis oriented film can be obtained at 50% $N_2$ with full width at half maximum (FWHM) $4.5^{\circ}$. Decrease in surface roughness from 7.5 nm to 4.6 nm found to be associated with decrease in grain size, with $N_2$ concentration; however, the AlN film fabricated at 20% $N_2$ exhibited a granular type of structure with non-uniform grains. The absorption peak was observed around 675 $cm^{-1}$ in fourier transform infrared spectroscopy (FTIR). It is concluded that the AlN film deposited at $N_2$ concentration of 50% exhibited the most desirable properties for the application of high-frequency surface acoustic devices.

  • PDF

Digital Hologram Watermarking using Quad-tree Fresnelet Transform (Quad-tree Fresnelet 변환을 이용한 디지털 홀로그램 워터마킹)

  • Seo, Young Ho;Koo, Ja Myung;Lee, Yoon Hyuk;Kim, Dong Wook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.79-89
    • /
    • 2013
  • This paper proposes a watermarking scheme to protect ownership of a digital hologram, an ultra-high value-added content. It performs pre-defined levels of quad-tree Fresnelet transforms. The relationship among the same-positional-blocks is extracted as the digital pre-watermark. For the relationship, we use properties of a digital hologram that a hologram pixel retains all the information of the object and that the same size of partial holograms reconstructs the same size of object but different in their view points. Also we mix a set of private data with the pre-watermark and the result is encrypted by a block cipher algorithm with a private key. Experimental results showed that the proposed scheme is very robust for the various malicious and non-malicious attacks. Also because it extracts the watermarking data instead of inserting, the watermarking process does not harm the original hologram data. So, it is expected to be used effectively for invisible and robust watermark for digital holograms.

Pilot-Aided Channel Estimation for OFDM System Using Wavelet Transform and Interpolation (웨이블릿 변환과 보간법을 이용한 OFDM 파일럿 지원 채널 추정기술)

  • Kong Hyung-Yun;Khuong Ho Van;Nam Doo-Hee
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.665-672
    • /
    • 2005
  • We present a novel pilot-aided channel estimation method for OFDM (Orthogonal Frequency Division Muitiplexing) system using WT(Wavelet transform) and interpolation. Due to excellent AWGN (Additive White Gaussian Noise) cancellation capability of n, pilot channels are estimated quite exactly and then, Dey are used in 2-degree polynomial interpolating the other remaining data symbol channels. The simulation results for Short WATM (Wireless Asynchronous Transfer Mode) channel show that the degradation in BER (Bit Error Ratio) performance of OFDM system iか this estimator is negligible compared to the case of perfect knowledge of CSI (Channel State Information).

Optimal Hyper Analytic Wavelet Transform for Glaucoma Detection in Fundal Retinal Images

  • Raja, C.;Gangatharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1899-1909
    • /
    • 2015
  • Glaucoma is one of the most common causes of blindness which is caused by increase of fluid pressure in the eye which damages the optic nerve and eventually causing vision loss. An automated technique to diagnose glaucoma disease can reduce the physicians’ effort in screening of Glaucoma in a person through the fundal retinal images. In this paper, optimal hyper analytic wavelet transform for Glaucoma detection technique from fundal retinal images is proposed. The optimal coefficients for transformation process are found out using the hybrid GSO-Cuckoo search algorithm. This technique consists of pre-processing module, optimal transformation module, feature extraction module and classification module. The implementation is carried out with MATLAB and the evaluation metrics employed are accuracy, sensitivity and specificity. Comparative analysis is carried out by comparing the hybrid GSO with the conventional GSO. The results reported in our paper show that the proposed technique has performed well and has achieved good evaluation metric values. Two 10- fold cross validated test runs are performed, yielding an average fitness of 91.13% and 96.2% accuracy with CGD-BPN (Conjugate Gradient Descent- Back Propagation Network) and Support Vector Machines (SVM) respectively. The techniques also gives high sensitivity and specificity values. The attained high evaluation metric values show the efficiency of detecting Glaucoma by the proposed technique.

Improved First-Phoneme Searches Using an Extended Burrows-Wheeler Transform (확장된 버로우즈-휠러 변환을 이용한 개선된 한글 초성 탐색)

  • Kim, Sung-Hwan;Cho, Hwan-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.12
    • /
    • pp.682-687
    • /
    • 2014
  • First phoneme queries are important functionalities that provide an improvement in the usability of interfaces that produce errors frequently due to their restricted input environment, such as in navigators and mobile devices. In this paper, we propose a time-space efficient data structure for Korean first phoneme queries that disassembles Korean strings in a phoneme-wise manner, rearranges them into circular strings, and finally, indexes them using the extended Burrows-Wheeler Transform. We also demonstrate that our proposed method can process more types of query using less space than previous methods. We also show it can improve the search time when the query length is shorter and the proportion of first phonemes is higher.

Selective Encryption Algorithm for 3D Printing Model Based on Clustering and DCT Domain

  • Pham, Giao N.;Kwon, Ki-Ryong;Lee, Eung-Joo;Lee, Suk-Hwan
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.152-159
    • /
    • 2017
  • Three-dimensional (3D) printing is applied to many areas of life, but 3D printing models are stolen by pirates and distributed without any permission from the original providers. Moreover, some special models and anti-weapon models in 3D printing must be secured from the unauthorized user. Therefore, 3D printing models must be encrypted before being stored and transmitted to ensure access and to prevent illegal copying. This paper presents a selective encryption algorithm for 3D printing models based on clustering and the frequency domain of discrete cosine transform. All facets are extracted from 3D printing model, divided into groups by the clustering algorithm, and all vertices of facets in each group are transformed to the frequency domain of a discrete cosine transform. The proposed algorithm is based on encrypting the selected coefficients in the frequency domain of discrete cosine transform to generate the encrypted 3D printing model. Experimental results verified that the proposed algorithm is very effective for 3D printing models. The entire 3D printing model is altered after the encryption process. The decrypting error is approximated to be zero. The proposed algorithm provides a better method and more security than previous methods.