• 제목/요약/키워드: N-terminal domain

검색결과 290건 처리시간 0.029초

Molecular identification and expression analysis of bactericidal permeability-increasing protein/ LPS-binding protein (BPI/LBP) from Black rockfish Sebastes schlegeli

  • Kwon, Mun-Gyeong;Kim, Ju-Won;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Baeck, Gun-Wook;Park, Chan-Il
    • 한국어병학회지
    • /
    • 제23권3호
    • /
    • pp.323-334
    • /
    • 2010
  • Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) are important components of the mammalian innate defence system against Gram-negative infections. The BPI/LBP cDNA was identified from the black rockfish ConA/PMA or LPS stimulated leukocyte cDNA library. The full-length BR-BPI/LBP cDNA was 2118 bp long and contained an open reading frame (ORF) of 1422 bp that encoded 473 amino-acid residues. The 5' UTR had a length of 57 bp, and the 3' UTR 639 bp. The molecular weight and theoretical isoelectric point (pI) values were calculated 51.4 kDa and 9.72, respectively. Compared with other known BPI or BPI/LBP peptide sequences, the most conserved regions of the black rockfish BPI/LBP peptide were found to be the BPI1 N-terminal, BPI2 C-terminal domains and a LPS binding domain. Phylogenetic analysis based on the deduced amino acid sequence revealed a homologous relationship between the BPI/LBP sequence of black rockfish and that of other teleosts. The black rockfish BPI/LBP gene was predominantly expressed in the PBLs, head kidney, trunk kidney and spleen. The expression of the black rockfish BPI/LBP molecule was induced in the peripheral blood leukocytes (PBLs) from 1 to 24 h following LPS stimulation, with a peak at 12 h post-stimulation.

Exploring the molecular characteristics, detoxification functions, and immune responses of two glutathione S-transferases in redlip mullet (Liza haematochelia)

  • Jeongeun Kim;Welivitiye Kankanamge Malithi Omeka;Qiang Wan;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • 제27권5호
    • /
    • pp.314-328
    • /
    • 2024
  • The mechanism for the elimination of xenobiotics undergoes three different phases of reactions in organisms. Among these, glutathione S-transferases (GSTs) are classified as phase II detoxification enzymes, catalyzing the conjugation of electrophilic substrates to glutathione or reduced hydroperoxides. This study aimed to investigate the molecular characteristics, detoxification functions, and immune responses of GST omega (LhGSTO1) and kappa (LhGSTK1) in redlip mullet. The open reading frames of LhGSTO1 (720 bp) and LhGSTK1 (687 bp) encoded proteins of 239 and 228 amino acids, respectively. Sequence analysis revealed that LhGSTO1 and LhGSTK1 possessed GSH-binding sites in their N-terminal domains. Substrate-binding sites in the C-terminal domain were exclusively identified in LhGSTO1. In the tissue-specific transcription profile analysis, both LhGSTO1 and LhGSTK1 were ubiquitously expressed in all tissues of healthy mullets. Temporal expression analysis of LhGSTO1 and LhGSTK1 in the blood showed that their expression was significantly modulated by polyinosinic:polycytidylic (poly I:C), lipopolysaccharide (LPS), and Lactococcus garvieae. Different chemical and cellular assays were performed to assess the detoxification and cellular protective abilities of the two proteins. A substrate specificity test using the recombinant proteins revealed that both proteins possessed specific activity toward 1-chloro-2,4-dinitrobenzene (CDNB). In the disk diffusion assay, the smallest clearance zones were observed for LhGSTO1 and LGSTK1 against CdCl2. In the cell protection assay, both LhGSTO1 and LhGSTK1 showed significant Cd detoxification ability compared to the control. Collectively, these results demonstrate that GST omega and kappa are involved in host defense against immune stimulants and xenobiotics in redlip mullet.

Aspergillus nidulans 분비소낭 구성요소인 α-COP과 ε-COP의 결합 부위 분석 (Analysis of Protein Domain for Interaction between α-COP and ε-COP in Aspergillus nidulans)

  • 송은정;김기현;이환희;박정석;강은혜;박희문
    • 한국균학회지
    • /
    • 제40권4호
    • /
    • pp.224-228
    • /
    • 2012
  • A. nidulans ${\alpha}$-COP과 상호작용하는 단백질을 동정하기 위하여 ${\alpha}$-COP을 암호하는 유전자를 bait로 yeast two-hybrid 스크리닝용 A. nidulans cDNA 라이브러리를 탐색한 결과, COPI 소낭의 구성요소 중 하나인 ${\varepsilon}$-COP을 암호화하고 있는 유전자를 동정하고 $aneA^+$($\underline{A}$spergillus $\underline{n}$idulans $\underline{e}$psilon-COP, $AN{\varepsilon}$-COP)으로 명명하였다. $aneA^+$ 유전자는 총 296개의 아미노산을 암호화하고 있으며, 다른 균류의 ${\varepsilon}$-COP과 높은 상동성을 보였다. Yeast two hybrid 시스템으로 두 단백질 간의 상호작용 부위를 분석한 결과, ${\alpha}$-COP의 COOH 도메인과 ${\varepsilon}$-COP의 C-말단부가 필수 부위였으며, ${\alpha}$-COP N-말단의 WD 도메인과 ${\varepsilon}$-COP의 TPR 부위는 두 단백질 간의 결합을 촉진하는 조절부위로 밝혀졌다. 또한 사상균인 A. nidulans와 효모류인 S. cerevisiae에서 ${\alpha}$-COP과 ${\varepsilon}$-COP 간 작용양상이 유사한 것으로 보아, COPI 소낭의 구성요소인 ${\alpha}$-COP과 ${\varepsilon}$-COP 간의 상호작용 기전은 진핵세포 내에서 진화적으로 잘 보존되어 있는 것으로 추정되었다.

Saccharomyces cerevisiae에서 번역 개시 인자 eIF1A 돌연변이에 대한 분석 (Mutational Analyses of Translation Initiation Factor eIF1A in Saccharomyces cerevisiae)

  • 권성훈;김준호;최보경;김나연;최도희;박경준;어정현;배성호
    • 미생물학회지
    • /
    • 제45권3호
    • /
    • pp.239-245
    • /
    • 2009
  • 번역 개시 인자 eIF1A는 진핵생물에서 43S preinitiation complex 형성을 비롯한 번역 개시 과정의 여러 단계에서 필수적인 역할을 하며, 잘 보존된 oligonucleotide-binding (OB) fold를 가지고 있는 단백질이다. 본 연구진은 이전 연구에서 eIF1A가 RNA annealing 활성을 가지고 있으며 double-stranded RNA에 결합하여 안정된 복합체를 형성한다는 것을 발견한 바 있다. 본 연구에서는 이러한 활성을 나타내는데 필요한 active site를 찾고, 이러한 활성이 효모의 성장에 필수적인 기능인지를 알아보기 위하여 여러 가지 돌연변이를 제조하였다. N-말단과 C-말단은 제거되었지만 완전한 OB-fold를 가지고 있는 eIF1A($\Delta$T)는 RNA annealing 활성을 보이는 반면, OB-fold에 돌연변이가 도입된 단백질들은 모두 활성이 사라졌다. 또한, R57D 돌연변이를 제외한 모든 OB-fold 돌연변이는 dsRNA에도 결합하지 않았다. 이러한 결과는 eIF1A의 RNA annealing 활성과 dsRNA 결합에는 완전한 OB-fold domain이 필요하다는 것을 의미한다. 돌연변이들이 효모의 성장에 미치는 영향을 조사한 결과, RNA annealing 활성과 효모의 성장은 뚜렷한 연관성이 없었으며, 적어도 R57D와 K94D 경우에는 돌연변이가 성장하지 못하는 원인이 생체 내 eIF1A 단백질의 안정성과 관계있는 것으로 생각된다.

Intrinsically disordered fold of a PIAS1-binding domain of CP2b

  • Jo, Ku-Sung;Jo, Hae-Ri;Kim, Chul Geun;Kim, Chan-Gil;Won, Hyung-Sik
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.30-35
    • /
    • 2014
  • The transcription factor CP2 regulates various biological systems at diverse tissues and cells. However, none of the four CP2 isoforms has been solved in structure yet. In particular, two different regions of the CP2b isoform have been characterized to interact with the PIAS1 in nucleus to regulate the ${\alpha}$-globin gene expression. Among them, in this study, the region encompassing residues 251-309 of CP2b was prepared as a recombinant protein and its solution structure was characterized by NMR spectroscopy. The results indicated that the CP2b(251-309) fold belongs to typical IDRs (intrinsically disordered regions), likely to facilitate promiscuous interactions with various target proteins. Unfortunately, however, its interaction with the N-terminal domain of PIAS1 (residues 1-70), which has been identified as one of the CP2b-binding sites, was not observed in the NMR-based titration experiments. Therefore, it could be postulated that the 251-309 region of CP2b would not contact with the PIAS1(1-70), but alternatively interact with another CP2b-binding region that encompasses residues 400-651 of PIAS1.

Classical Swine Fever (Hog Cholera) Virus 약독순화주 (Suri 주)의 gp55 Gnen 염기서열 분석 (Sequence Analysis of the Gene Encoding gp55 Protein of Suri Strain, an Attenuated Classical Swine Fever (Hog Cholera) Virus)

  • 김귀현;장경수;강경임;이병형;박종현;안수환;전무형
    • 대한바이러스학회지
    • /
    • 제28권4호
    • /
    • pp.303-316
    • /
    • 1998
  • An attenuated classical swine fever virus (CSFV), Suri strain, is a variant derived from a vaccine virus, LOM strain. This study was performed to elucidate the molecular biologcal properties of CSFV Suri strain, and to obtain the basic data for molecular epidemiological approaches for the disease. The truncated form of gp55 gene without the C-terminal transmembrane domain, in size of 1,023bp, was amplified by RT-PCR and sequenced by dye terminator cyclic sequencing method, and inserted into BamHI site of pAcGP67B baculovirus vector, establishing a cloned pAcHEG plasmid. By the nucleotide sequences determined, 341 amino acid sequences were predicted. As compared the nucleotide and amino acid sequences of gp55 of Suri with the various CSFV, Suri strain showed the high homology over 99.1% with ALD and LOM strains, but comparably the lower homology with Alfort and Brescia. In comparison of amino acid sequence in variable domain of gp55 protein, the similar tendency of homology was observed. In hydrophobicity analysis, all of four CSFV strains revealed the analogous patterns of hydrophobicity. The numbers and locations of N-glycosylation site and cysteine residues in gp55 were analyzed, those of Suri strain being coincident with ALD and LOM strains. The results suggest that gp55 in Suri strain has the high similarity to those in ALD and LOM strains in terms of the nucleotide and amino acid sequences and the functional properties of gp55 protein.

  • PDF

Plant Molecular Farming Using Oleosin Partitioning Technology in Oilseeds

  • Moloney, Maurice-M.
    • 식물조직배양학회지
    • /
    • 제24권4호
    • /
    • pp.197-201
    • /
    • 1997
  • Plant seed oil-bodies or oleosomes ate the repository of the neutral lipid stored in seeds. These organelles in many oilseeds may comprise half of the total cellular volume. Oleosomes are surrounded by a half-unit membrane of phospholipid into which are embedded proteins called oleosins. Oleosins are present at high density on the oil-body surface and after storage proteins comprise the most abundant proteins in oilseeds. Oleosins are specifically targeted and anchored to oil-bodies after co-translation on the ER. It has been shown that the amino-acid sequences responsible for this unique targeting reside primarily in the central hydrophobic tore of the oleosin polypeptide. In addition, a signal-like sequence is found near the junction of the hydrophobic domain and ann N-terminal hydrophilic / amphipathic domain. This "signal" which is uncleaved is also essential for correct targeting. Oil-bodies and their associated oleosins may be recovered by floatation centrifugation of aqueous seed extracts. This simple partitioning step results in a dramatic enrichment for oleosins in the oil-body fraction. In the light of these properties, we reasoned that it would be feasible to create fusion proteins on oil-bodies comprising oleosins and an additional valuable protein of pharmaceutical or industrial interest. It was further postulated that if these proteins were displayed on the outer surface of oil-bodies, it would be possible to release them from the purified oil-bodies using chemical or proteolytic cleavage. This could result in a simple means of recovering high-value protein from seeds at a significant (i.e. commercial) scale. This procedure has been successfully reduced to practice for a wide variety of proteins of therapeutic, industrial and food no. The utillity of the method will be discussed using a blood anticoagulant, hirudin, and industrial enzymes as key examples.

  • PDF

Comparative Effects of $PKB-{\alpha}$ and $PKC-{\zeta}$ on the Phosphorylation of GLUT4-Containing Vesicles in Rat Adipocytes

  • Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.487-496
    • /
    • 2000
  • Insulin stimulates glucose transport in muscle and fat cells by promoting the translocation of glucose transporter (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3-kinase) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt and $PKC-{\zeta}$, those are known as the downstream target of PI3-kinase in regulation of GLUT4 translocation, is not known yet. An interesting possibility is that these protein kinases phosphorylate GLUT4 directly in this process. In the present study, $PKB-{\alpha}$ and $PKC-{\zeta}$ were added exogenously to GLUT4-containing vesicles purified from low density microsome (LDM) of the rat adipocytes by immunoadsorption and immunoprecipitation for direct phosphorylation of GLUT4. Interestingly GLUT4 was phosphorylated by $PKC-{\zeta}$ and its phosphorylation was increased in insulin stimulated state but GLUT4 was not phosphorylated by $PKB-{\alpha}.$ However, the GST-fusion proteins, GLUT4 C-terminal cytoplasmic domain (GLUT4C) and the entire major GLUT4 cytoplasmic domain corresponding to N-terminus, central loop and C-terminus in tandem (GLUT4NLC) were phosphorylated by both $PKB-{\alpha}$ and $PKC-{\zeta}.$ The immunoblots of $PKC-{\zeta}$ and $PKB-{\alpha}$ antibodies with GLUT4-containing vesicles preparation showed that $PKC-{\zeta}$ was co-localized with the vesicles but not $PKB-{\alpha}.$ From the above results, it is clear that $PKC-{\zeta}$ interacts with GLUT4-containing vesicles and it phosphorylates GLUT4 protein directly but $PKB-{\alpha}$ does not interact with GLUT4, suggesting that insulin-elicited signals that pass through PI3-kinase subsequently diverge into two independent pathways, an Akt pathway and a $PKC-{\zeta}$ pathway, and that later pathway contributes, at least in part, insulin stimulation of GLUT4 translocation in adipocytes via a direct GLUT4 phosphorylation.

  • PDF

Expression of BrD1, a Plant Defensin from Brassica rapa, Confers Resistance against Brown Planthopper (Nilaparvata lugens) in Transgenic Rices

  • Choi, Man-Soo;Kim, Yul-Ho;Park, Hyang-Mi;Seo, Bo-Yoon;Jung, Jin-Kyo;Kim, Sun-Tae;Kim, Min-Chul;Shin, Dong-Bum;Yun, Hong-Tai;Choi, Im-Soo;Kim, Chung-Kon;Lee, Jang-Yong
    • Molecules and Cells
    • /
    • 제28권2호
    • /
    • pp.131-137
    • /
    • 2009
  • Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.

Proteinase 3-processed form of the recombinant IL-32 separate domain

  • Kim, Sun-Jong;Lee, Si-Young;Her, Erk;Bae, Su-Young;Choi, Ji-Da;Hong, Jae-Woo;JaeKal, Jun;Yoon, Do-Young;Azam, Tania;Dinarello, Charles A.;Kim, Soo-Hyun
    • BMB Reports
    • /
    • 제41권11호
    • /
    • pp.814-819
    • /
    • 2008
  • Interleukin-32 (IL-32) induces a variety of proinflammatory cytokines and chemokines. The IL-32 transcript was reported originally in activated T cells; subsequently, it was demonstrated to be abundantly expressed in epithelial and endothelial cells upon stimulation with inflammatory cytokines. IL-32 is regulated robustly by other major proinflammatory cytokines, thereby suggesting that IL-32 is crucial to inflammation and immune responses. Recently, an IL-32$\alpha$-affinity column was employed in order to isolate an IL-32 binding protein, neutrophil proteinase 3 (PR3). Proteinase 3 processes a variety of inflammatory cytokines, including TNF$\alpha$, IL-$1{\beta}$, IL-8, and IL-32, thereby enhancing their biological activities. In the current study, we designed four PR3-cleaved IL-32 separate domains, identified by potential PR3 cleavage sites in the IL-32$\alpha$ and $\gamma$ polypeptides. The separate domains of the IL-32 isoforms $\alpha$ and $\gamma$ were more active than the intrinsic $\alpha$ and $\gamma$ isoforms. Interestingly, the N-terminal IL-32 isoform $\gamma$ separate domain evidenced the highest levels of biological activity among the IL-32 separate domains.