Browse > Article

Mutational Analyses of Translation Initiation Factor eIF1A in Saccharomyces cerevisiae  

Kwon, Sung-Hun (Department of Biological Sciences, College of Natural Science, Inha University)
Kim, Jun-Ho (Department of Biological Sciences, College of Natural Science, Inha University)
Choi, Bo-Kyung (Department of Biological Sciences, College of Natural Science, Inha University)
Kim, Na-Yeon (Department of Biological Sciences, College of Natural Science, Inha University)
Choi, Do-Hee (Department of Biological Sciences, College of Natural Science, Inha University)
Park, Kyoung-Jun (Department of Biological Sciences, College of Natural Science, Inha University)
Eoh, Jung-Hyun (Department of Biological Sciences, College of Natural Science, Inha University)
Bae, Sung-Ho (Department of Biological Sciences, College of Natural Science, Inha University)
Publication Information
Korean Journal of Microbiology / v.45, no.3, 2009 , pp. 239-245 More about this Journal
Abstract
Translation initiation factor eIF1A performs essential functions in various initiation steps including 43S preinitiation complex formation in eukaryotes, and contains a highly conserved oligonucleotide-binding (OB) fold. In our previous study, we discovered that eIF1A possesses RNA annealing activity and forms a stable complex with double-stranded RNA. In this study, we initiated site-directed mutations in eIF1A to find the active sites for these biochemical activities and to investigate whether they are essential functions for yeast cell growth. A truncated protein, eIF1A($\Delta$T), devoid of both N- and C-terminal domains but containing an intact OB-fold exhibited RNA annealing activity. In contrast, all point mutations in OB-fold domain, except R57D, impaired both RNA annealing and dsRNA binding activities, indicating that the intact OB-fold domain is required for both activities. Viabilities of the mutant yeast cells were not correlated with RNA annealing activity but with the in vivo protein stabilities in the case of R57D and K94D.
Keywords
double-stranded RNA; eIF1A; RNA chaperone; S. cerevisiae; translation initiation factor;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Acker, M.G., B.S. Shin, J.S. Nanda, A.K. Saini, T.E. Dever, and J.R. Lorsch. 2009. Kinetic analysis of late steps of eukaryotic translation initiation. J. Mol. Biol. 385, 491-506   DOI   ScienceOn
2 Cristofari, G. and J.L. Darlix. 2002. The ubiquitous nature of RNA chaperone proteins. Prog. Nucleic Acids Res. Mol. Biol. 72, 223-268   DOI
3 Fekete, C.A., D.J. Applefield, S.A. Blakely, N. Shirokikh, T. Pestova, J.R. Lorsch, and A.G. Hinnebusch. 2005. The eIF1A Cterminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J. 19, 3588-3601   DOI   ScienceOn
4 Kainuma, M. and J.W.B. Hershey. 2001. Depletion and deletion analyses of eukaryotic translation initiation factor 1A in Saccharomyces cerevisiae. Biochimie 83, 505-514   DOI   ScienceOn
5 Mayer, O., L. Rajkowitsch, C. Lorenz, R. Konrat, and R. Schroeder. 2007. RNA chaperone activity and RNA-binding properties of the E. coli protein SptA. Nucleic Acids Res. 35, 1257-1269   DOI   ScienceOn
6 Sette, M.P. van Tilborg, R. Spurio, R. Kaptein, M. Pici, C.O. Gualerzi, and R. Boelens. 1997. The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif. EMBO J. 16, 1436-1443   DOI   ScienceOn
7 Tompa, P. and P. Csermely. 2004. The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18, 1169-1175   DOI   ScienceOn
8 Sittka, A., V. Pfeiffer, K. Tedin, and J. Vogel. 2007. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 63, 193-217   DOI   ScienceOn
9 Croitoru, V., K. Semrad, S. prenninger, L. Rajkowisch, M. Vejen, B.S. Laursen, H.U. Sperling-Petersen, and L.A. Isaksson. 2006. RNA chaperone activity of translation initiation factor IF1. Biochimie 88, 1875-1882   DOI   ScienceOn
10 Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 14, 3329-3330   DOI   PUBMED   ScienceOn
11 Battiste, J.L., T.V. Pestova, C.U.T. Hellen, and G. Wagner. 2000. The elF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5, 109-119   DOI   ScienceOn
12 Marintchev, A., V.G. Kolupaeva, T.V. Pestova, and G. Wagner. 2003. Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: A new interaction between old partners. Proc. Natl. Acad. Sci. USA 100, 1535-1540   DOI   ScienceOn
13 Yu, Y., A. Marintchev, V.G. Kolupaeva, A. Unbehaun, T. Veryasova, S.C. Lai, P. Hong, G. Wagner, C.U.T. Hellen, and T.V. Pestova. 2009. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res. advance access published on June 26, 2009   DOI   PUBMED   ScienceOn
14 Fekete, C.A., S.F. Mitchell, V.A. Cherkasova, D. Applefield, M.A. Algire, D. Maag, A.K. Saini, J.R. Lorsch, and A.G. Hinnebusch. 2007. N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J. 26, 1602-1614   DOI   ScienceOn
15 Maag, D., M.A. Algire, and J.R. Lorsch. 2006. Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre-initiation complex plays a role in start site selection. J. Mol. Biol. 356, 724-737   DOI   ScienceOn
16 Lorsch, J.R. 2002. RNA chaperones exist and DEAD box proteins get a life. Cell 109, 797-800   DOI   PUBMED   ScienceOn
17 Li, W. and D.W. Hoffman. 2001. Structure and dynamics of translation initiation factor aIF-1A from the archaeon Methanococcus jannaschii determined by NMR spectroscopy. Protein Sci. 10, 2426-2438   DOI   PUBMED   ScienceOn
18 Kapp, L.D. and J.R. Lorsch. 2004. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73, 657-658   DOI   ScienceOn
19 Kwon, S.H., I.H. Lee, N.Y. Kim, D.H. Choi, Y.M. Oh, and S.H. Bae. 2007. Translation initiation factor eIF1A possesses an RNA annealing activity in its oligonucleotide-binding fold. Biochem. Biophys. Res. Commun. 361, 681-686   DOI   ScienceOn
20 Olsen, D.S., E.M. Savner, A. Mathew, F. Zhang, T. Krishnamoorthy, L. Phan, and A.G. Hinnebusch. 2003. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J. 22, 193-204   DOI   ScienceOn
21 Zuniga, S., I. Sola, J.L. Moreno, P. Sabella, J. Plana-Duran, and L. Enjuanes. 2007. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357, 215-227   DOI   ScienceOn