• Title/Summary/Keyword: N-terminal analysis

Search Result 485, Processing Time 0.038 seconds

Loss of the Retinoblastoma Gene in Non-Small Cell Lung Cancer (비소세포폐암에서의 망막모세포종유전자의 소실)

  • Lee, Choon-Taek;Kim, Chang-Min;Zo, Jae-Ill;Shim, Young-Mog;Hong, Weon-Seon;Lee, Jhin-Oh;Kang, Tae-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.98-103
    • /
    • 1993
  • Background: Inactivation of retinoblastoma gene (Rb) has been observed in a variety of human cancers. Loss of heterozygosity (LOH) of Rb which is a common mode of allelic inactivation of Rb, has been known as a frequent genetic event in small cell lung cancer but it has been detected less frequently in non-small cell lung cancer. To define the role of Rb deletion in lung cancer, we investigated the genomic DNAs of 43 non-small cell lung cancers and 1 small cell lung cancer paired with normal lung tissues obtained by thoracotomy. Methods: The genomic DNAs were obtained by the digestion with proteinase K followed by phenol-chloroform extraction method. The genomic DNAs were digested by restriction endonuclease (EcoRI), separated by agarose gel electrophoresis, transferred to nylon membrane by Southern blot transfer and then hybridized with labelled Rb 1 probe which contains. 1.4 kb sized DNA sequence containing N-terminal portion of Rb. Results: In 26 squamous cell lung cancers, 16 cases were informative after EcoRI digestion and LOH of Rb was found in 10 cases (62.5%). In 17 adenocarcinomas of lung, 11 cases were informative and LOH of Rb was found in five cases (45.4%). The analysis of clinical parameters revealed no significant differences between the two groups with or without LOH of Rb in the aspects of age, sex, degree of differentiation, stage and smoking amount. Conclusions: These results suggest that Rb inactivation is also significantly involved in the molecular pathogenesis of non-small cell lung cancer.

  • PDF

Morin Protects Normal Human Dermal Fibroblasts from Ultraviolet B-induced Apoptosis (자외선 B로 유도된 아포토시스로부터 모린의 정상 인간 피부 섬유아세포 보호효과)

  • Jeong Eon Park;Ao Xuan Zhen;Mei Jing Piao;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Jin Won Hyun
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.305-314
    • /
    • 2023
  • Ultraviolet B (UVB) irradiation causes skin diseases by inducing cellular oxidative stress, photoaging, and inflammation. This study aimed to investigate the protective effects of morin against UVB-induced oxidative stress in normal human dermal fibroblasts (NHDFs). Morin has been reported to be a potential therapeutic candidate for oxidative stress-mediated diseases, neurodegenerative diseases, and inflammation. Since morin has been identified as a potential antioxidant, we speculated that morin could alleviate UVB-induced apoptosis in NHDFs. Cell viability and intracellular reactive oxygen species (ROS) levels were measured using the MTT assay, H2DCFDA, and the DHE staining method, respectively. Lipid peroxidation and protein carbonyl formation were tested using ELISA kits. DNA fragmentation and comet assay were used to assess DNA damage. Apoptotic bodies were analyzed using Hoechst 33342 staining and TUNEL assay. The expression of apoptosis-related proteins was examined using Western blot analysis. Morin showed a cyto-protective effect by scavenging UVB-induced ROS, increasing the expression of antioxidant-related proteins and inhibiting UVB-induced oxidative alterations such as lipid peroxidation, protein carbonylation, and DNA damage. Morin protects against UVB-induced cell apoptosis by inhibiting Bcl-2-associated X protein, caspase-9, and caspase-3 expression, while increasing the expression of the anti-apoptotic protein Bcl-2. These effects of morin were conferred through decreased phosphorylation of p38 and c-Jun N-terminal kinase 1/2. The results demonstrated that morin may be developed as a preventive/therapeutic drug to be used to prevent UVB-induced skin damage.

Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells (LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과)

  • Ji-Hye Hong;Eun-Seo Jang;Myung-Chul Gil;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2023
  • This study was designed to evaluate the anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium (B-RAE) in LPS-stimulated RAW 264.7 cells. The total polyphenol and total flavonoid content of B-RAE were 379.26±7.77 mg/g and 50.85±3.08 mg/g, respectively. The results of measuring the antioxidant activity of B-RAE showed that it scavenges 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and superoxide anion radical in a dose-dependent manner. B-RAE inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability. The gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-lβ (IL-1β), and IL-6 was measured using real time quantitative reverse transcription PCR (qRT-PCR). We found that, compared to the LPS-treated group, B-RAE significantly reduced the mRNA levels of the pro-inflammatory cytokines in a concentration-dependent manner. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the phosphorylation of transcription factors such as nuclear factor-κB (NF-κB), and the mitogen-activated protein kinase (MAPK) signaling pathway proteins were assessed using Western blot analysis. We found that B-RAE significantly suppressed the expression of iNOS and COX-2, but their expression was increased by LPS treatment. In addition, the phosphorylation of NF-κB and IκB, which was increased by LPS treatment, was reduced with B-RAE treatment. The effect of B-RAE on the phosphorylation of the MAPK signaling pathway proteins was measured, and the phosphorylation of extracellular signal-regulated kinase (ERK) and the p38 MAPK proteins decreased in a dose-dependent manner, while the phosphorylation of c-Jun N-terminal kinase (JNK) increased. These anti-inflammatory effects of B-RAE may thus have been achieved through the high antioxidant activity, the inhibition of NO production through the suppression of iNOS and COX-2 expression, the inhibition of the NF-κB pathway, and the suppression of pro-inflammatory cytokine expression.

PS-341-Induced Apoptosis is Related to JNK-Dependent Caspase 3 Activation and It is Negatively Regulated by PI3K/Akt-Mediated Inactivation of Glycogen Synthase Kinase-$3{\beta}$ in Lung Cancer Cells (폐암세포주에서 PS-341에 의한 아포프토시스에서 JNK와 GSK-$3{\beta}$의 역할 및 상호관련성)

  • Lee, Kyoung-Hee;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.449-460
    • /
    • 2004
  • Background : PS-341 is a novel, highly selective and potent proteasome inhibitor, which showed cytotoxicity against some tumor cells. Its anti-tumor activity has been suggested to be associated with modulation of the expression of apoptosis-associated proteins, such as p53, $p21^{WAF/CIP1}$, $p27^{KIP1}$, NF-${\kappa}B$, Bax and Bcl-2. c-Jun N-terminal kinase (JNK) and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) are important modulators of apoptosis. However, their role in PS-341-induced apoptosis is unclear. This study was undertaken to elucidate the role of JNK and GSK-$3{\beta}$ in the PS-341-induced apoptosis in lung cancer cells. Method : NCI-H157 and A549 cells were used in the experiments. The cell viability was assayed using the MTT assay and apoptosis was evaluated by proteolysis of PARP. The JNK activity was measured by an in vitro immuno complex kinase assay and by phosphorylation of endogenous c-Jun. The protein expression was evaluated by Western blot analysis. Dominant negative JNK1 (DN-JNK1) and GSK-$3{\beta}$ were overexpressed using plasmid and adenovirus vectors, respectively. Result : PS-341 reduced the cell viability via apoptosis, activated JNK and increased the c-Jun expression. Blocking of the JNK activation by overexpression of DN-JNK1, or pretreatment with SP600125, suppressed the apoptosis induced by PS-341. The activation of caspase 3 was mediated by JNK activation. Blocking of the caspase 3 activation suppressed PS-341-induced apoptosis. PS-341 activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but its blockade enhanced the PS-341-induced cell death via apoptosis. GSK-$3{\beta}$ was inactivated by PS-341 via the PI3K/Akt pathway. Overexpression of constitutively active GSK-$3{\beta}$ enhanced PS-341-induced apoptosis; in contrast, this was suppressed by dominant negative GSK-$3{\beta}$ (DN-GSK-$3{\beta}$). Inactivation of GSK-$3{\beta}$ by pretreatment with lithium chloride or the overexpression of DN-GSK-$3{\beta}$ suppressed both the JNK activation and c-Jun up-regulation induced by PS-341. Conclusion : The JNK/caspase pathway is involved in PS-341-induced apoptosis, which is negatively regulated by the PI3K/Akt-mediated inactivation of GSK-$3{\beta}$ in lung cancer cells.

Muc5ac Gene Expression Induced by Cigarette Smoke is Mediated Via a Pathway Involving ERK1/2 and p38 MAPK (담배 연기에 의한 Muc5ac 유전자 발현에 관여하는 세포 내 신호 전달 경로로서의 ERK1/2와 p38 MAPK)

  • Kim, Yong Hyun;Yoon, Hyoung Kyu;Kim, Chi Hong;Ahn, Joong Hyun;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Park, Sung Hak;Song, Jeong Sup;Cho, Kyung Sook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.6
    • /
    • pp.590-599
    • /
    • 2005
  • Object : Cigarette smoking is a major cause of mucus hypersecretion, which is a pathophysiological feature of many inflammatory airway diseases. Mucins, which are an important part of the airway mucus, are synthesized from the Muc gene in airway epithelial cells. However, the signaling pathways for cigarette smoke-induced mucin synthesis are unknown. The aim of this study was to determine the signal pathway for smoking induced Muc5ac gene expression. Methods : A549 cells were cultured and transiently transfected with the Muc5ac promoter fragment. These cells were stimulated with 5% cigarette smoke extract (CSE) alone or with CSE after a pretreatment with various signal transduction pathway inhibitors (AG1478, PD98059 and SB203580). The Muc5ac promoter activity was examined using the luciferase reporter system, and the level of phosphorylated EGFR, ERK1/2, p38 MAPK and JNK were all examined using Western blot analysis. Muc5ac mRNA expression was also examined using reverse transcriptase polymerase chain reactions (RT-PCR). Results : 1. The peak level of luciferase activity of the Muc5ac promoter was observed at 5% concentration and after 3 hours of incubation with the CSE. The level of EGFR phosphorylation and the luciferase activity of the transfected cells caused by the CSE were significantly suppressed by AG1478 or PD98059 (P<0.01). 2. CSE phosphorylated ERK1/2 or p38 MAPK but not JNK. The Muc5ac mRNA expression level was increased by the CSE but that was suppressed by PD98059 or AG1478. 3. The CSE-induced phosphorylation of ERK1/2 was blocked by PD98059 and that of p38 MAPK was blocked by either PD98059 or SB203580. Either PD98059 or SB203580 suppressed the luciferase activity of the transfected cells (P<0.0001). Conclusion : The Muc5ac mRNA expression level was increased by the CSE. The increased CSE-induced transcriptional activity was mediated via EGF receptor activation, which led to ERK1/2 and p38 MAPK phosphorylation.