• Title/Summary/Keyword: N-methyl-D-aspartate receptor

Search Result 118, Processing Time 0.035 seconds

Involvement of NMDA Receptor and L-type Calcium Channel in the Excitatory Action of Morphine

  • Koo, Bon-Seop;Shin, Hong-Kee;Kang, Suk-Han;Jun, Jong-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.241-246
    • /
    • 2002
  • We studied the excitatory action of morphine on the responses of dorsal horn neuron to iontophoretic application of excitatory amino acid and C-fiber stimulation by using the in vivo electrophysiological technique in the rat. In 137 of the 232 wide dynamic range (WDR) neurons tested, iontophoretic application of morphine enhanced the WDR neuron responses to N-methyl-D-aspartate (NMDA), kainate, and graded electrical stimulation of C-fibers. Morphine did not have any excitatory effects on the responses of low threshold cells. Morphine-induced excitatory effect at low ejection current was naloxone-reversible and reversed to an inhibitory action at high ejection current. NMDA receptor, calcium channel and intracellular $Ca^{2+}$ antagonists strongly antagonized the morphine-induced excitatory effect. These results suggest that changes in intracellular ionic concentration, especially $Ca^{2+},$ play an important role in the induction of excitatory effect of morphine in the rat dorsal horn neurons.

Ginsenosides Inhibit NMDA Receptor-Mediated Epileptic Discharges in Cultured Hippocampal Neurons

  • Kim, Sun-Oh;Rhim, Hye-Whon
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.524-530
    • /
    • 2004
  • Epilepsy or the occurrence of spontaneous recurrent epileptiform discharges (SREDs, seizures) is one of the most common neurological disorders. Shift in the balance of brain between excitatory and inhibitory functions due to different types of structural or functional alterations may cause epileptiform discharges. N-Methyl-D-aspartate (NMDA) receptor dysfunctions have been implicated in modulating seizure activities. Seizures and epilepsy are clearly dependent on elevated intracellular calcium concentration ([C $a^{2+}$]$_{i}$ ) by NMDA receptor activation and can be prevented by NMDA antagonists. This perturbed [C $a^{2+}$]$_{i}$ levels is forerunner of neuronal death. However, therapeutic tools of elevated [C $a^{2+}$]$_{i}$ level during status epilepticus (SE) and SREDs have not been discovered yet. Our previous study showed fast inhibition of ginseng total saponins and ginsenoside R $g_3$ on NMDA receptor-mediated [C $a^{2+}$]$_{i}$ in cultured hippocampal neurons. We, therefore, examined the direct modulation of ginseng on hippocampal neuronal culture model of epilepsy using fura-2-based digital $Ca^{2+}$ imaging and neuronal viability assays. We found that ginseng total saponins and ginsenoside R $g_3$ inhibited $Mg^{2+}$ free-induced increase of [C $a^{2+}$]$_{i}$ and spontaneous [C $a^{2+}$]$_{i}$ oscillations in cultured rat hippocampal neurons. These results suggest that ginseng may playa neuroprotective role in perturbed homeostasis of [C $a^{2+}$]$_{i}$ and neuronal cell death via the inhibition of NMDA receptor-induced SE or SREDs.d SE or SREDs..

Nitric Oxide Synthase Inhibitor Decreases NMDA-Induced Elevations of Extracellular Glutamate and Intracellular $Ca^{2+}$ Levels Via a cGMP-Independent Mechanism in Cerebellar Granule Neurons

  • Oh, Sei-Kwan;Yun, Bong-Sik;Ryoo, In-Ja;Patrick P.McCaslin;Yoo, Ick-Dong
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.48-54
    • /
    • 1999
  • These studies were designed to examine the differential effect of nitric oxide (NO) and cGMP on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulates the elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), the release of glutamate, the synthesis of NO and an increase of cGMP. Although NO has been shown to stimulate guanylyl cyclase, it is unclear yet whether NO alters the NMDA-induced glutamate release and ${[Ca^{2+}]}_i$ elevation. We showed that the NO synthase inhibitor, NG-monomethyl-L-arginine (NMMA), partially prevented the NMDA-induced release of glutamate and elevation of ${[Ca^{2+}]}_i$ and completely blocked the elevation of cGMP. These effects of NO on glutamate release and [Ca2+]i elevation were unlikely to be secondary to cGMP as the cGMP analogue, dibutyryl cGMP (dBcGMP), did not suppress the effects of NMDA. Rather, dBcGMP slightly augmented the NMDA-induced elevation of ${[Ca^{2+}]}_i$ with no change in the basal level of glutamate or ${[Ca^{2+}]}_i$. The extracellular NO scavenger hydroxocobalamine prevented the NMDA-induced release of glutamate providing indirect evidence that the effect of NO may act on the NMDA receptor. These results suggest that low concentration of NO has a role in maintaining the NMDA receptor activation in a cGMP-independent manner.

  • PDF

Changes of the Extracellular Concentrations of Striatal Dopamine and Its Metabolites by MK-801 in Morphine-Dependent Rats (MK-801 투여에 의한 몰핀의존성랫드 뇌선초체중 도파민신경절달물질의 변화)

  • 이선희;신대섭;유영아;류승렬;김대병
    • Biomolecules & Therapeutics
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • The roles of dopamine(DA) and N-methyl-D-aspartate(NMDA) system in the development and expression of morphine dependence were investigated by monitoring the concentrations of extracellular DA and its metabolites by in vivo microdialysis and simultaneous observation of behavioral changes in morphine dependent rats. Extracellular DA level in caudate putamen of morphine-dependent rat was decreased and the concentrations of its metabolites, dihydroxy phenylacetic acid(DOPAC) and homovanillic acid(HVA), were increased during naloxone-precipitated withdrawal. DA contents were recovered to normal levels by pretreatment of MK-801, a noncompetitive NMDA receptor antagonist, which may explain the mechanism of diminishing effect of MK-801 on withdrawal symptoms in morphine-dependent rats. MK-801(0.3 mg/tg, i.p.) induced the untoward hamful neurological signs such as ataxia and severe rotations, which may be produced by hyperactivation of dopaminergic system. These results suggest that MK-801 may inhibit the expression of mophine dependence by altering the dopamine release.

  • PDF

Protective Effect of Fangchinoline on Cyanide-Induced Neuro-toxicity in Cultured Rat Cerebellar Granule Cells

  • Cho, Soon-Ok;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a $Ca^{2+}$ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type$Ca^{2+}$channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 $\mu$M significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of $[Ca^{2+}]_i$ and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with $[Ca^{2+}]_i$influx, due to its function as a $Ca^{2+}$ channel blocker, and then by inhibiting glutamate release and oxidants generation.

Redox-modulation of NMDA receptor activity by nitric oxide congeners

  • Kim, Won-Ki;Stuart A. Lipton
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.125-132
    • /
    • 1995
  • In neurons, nitric oxide(NO) is produced by neuronal nitric oxide synthase following stimulation of N-methyl-D-aspartate(NMDA) receptors and the subsequent influx of Ca$\^$2+/. NO, induced in this manner, reportedly plays critical roles in neuronal plasticity, including neurite outgrowth, synaptic transmission, and long-term potentiation(LTP) (1-7). However, excessive activation of NMDA receptors has also been shown to be associated with various neurological disorders, including focal ischemia, epilepsy, trauma, neuropathic pain and chronic neurodegenerative maladies, such as Parkinson's disease, Hungtington's disease and amyotrophic lateral sclerosis(8). The paradox that nitric oxide(NO) has both neuroprotective and neurodestructive effects may be explained, at least in part, by the finding that NO effects on neurons are dependent on the redox state. This claim may be supported by the recent finding that tissue concentrations of cysteine approach 700 ${\mu}$M in settings of cerebral ischemia (9), levels of thiol that is expected to influence both the redox state of the system and the NO group itself(10).

  • PDF

Channelopathies

  • Kim, June-Bum
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Channelopathies are a heterogeneous group of disorders resulting from the dysfunction of ion channels located in the membranes of all cells and many cellular organelles. These include diseases of the nervous system (e.g., generalized epilepsy with febrile seizures plus, familial hemiplegic migraine, episodic ataxia, and hyperkalemic and hypokalemic periodic paralysis), the cardiovascular system (e.g., long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia), the respiratory system (e.g., cystic fibrosis), the endocrine system (e.g., neonatal diabetes mellitus, familial hyperinsulinemic hypoglycemia, thyrotoxic hypokalemic periodic paralysis, and familial hyperaldosteronism), the urinary system (e.g., Bartter syndrome, nephrogenic diabetes insipidus, autosomal-dominant polycystic kidney disease, and hypomagnesemia with secondary hypocalcemia), and the immune system (e.g., myasthenia gravis, neuromyelitis optica, Isaac syndrome, and anti-NMDA [N-methyl-D-aspartate] receptor encephalitis). The field of channelopathies is expanding rapidly, as is the utility of molecular-genetic and electrophysiological studies. This review provides a brief overview and update of channelopathies, with a focus on recent advances in the pathophysiological mechanisms that may help clinicians better understand, diagnose, and develop treatments for these diseases.

West syndrome with hyperkinesia and cortical visual impairment: A case report of GRIN1 encephalopathy

  • Choi, Seul A;Kim, Young Ok
    • Journal of Genetic Medicine
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2021
  • West syndrome (WS) presenting with infantile spasms, developmental delay, and hypsarrhythmia has genetic etiology in some patients. Movement disorders or visual impairment that share genetic underpinnings with infantile spasms can provide diagnostic clues for specific genetic mutations. Mutations of the GRIN1 gene encoding the glutamate receptor inotropic N-methyl-D-aspartate subunit can result in WS with hyperkinetic movements, cortical visual impairment, autistic features, and bilateral polymicrogyria. An 11-month-old boy with WS showed hyperkinetic movements and visual impairment. Brain magnetic resonance imaging and metabolic investigations revealed no abnormalities. Whole-exome sequencing revealed a novel likely pathogenic variant (c.1561_1563del; p.Asn521del) of GRIN1 (NM_007327.3). The proband was treated with vigabatrin and became seizure-free within one week. Notably, the cortical blindness improved within 3 months and the hyperkinetic movements resolved one year after the proband became seizure-free. To the best of our knowledge, this is the first report of GRIN1 encephalopathy in Koreans.

Korean Red Ginseng Extract Activates Non-NMDA Glutamate and GABAA Receptors on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

  • Yin, Hua;Park, Seon-Ah;Park, Soo-Joung;Han, Seong-Kyu
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Korean red ginseng (KRG) is a valuable and important traditional medicine in East Asian countries and is currently used extensively for botanical products in the world. KRG has both stimulatory and inhibitory effects on the central nervous system (CNS) suggesting its complicated action mechanisms. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Some studies reported that KRG has antinociceptive effects, but there are few reports of the functional studies of KRG on the SG neurons of the Vc. In this study, a whole cell patch clamp study was performed to examine the action mechanism of a KRG extract on the SG neurons of the Vc from juvenile mice. KRG induced short-lived and repeatable inward currents on all the SG neurons tested in the high chloride pipette solution. The KRG-induced inward currents were concentration dependent and were maintained in the presence of tetrodotoxin, a voltage gated $Na^+$ channel blocker. The KRG-induced inward currents were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and/or picrotoxin, a gamma-aminobutyric acid $(GABA)_A$ receptor antagonist. However, the inward currents were not suppressed by d,l-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. These results show that KRG has excitatory effects on the SG neurons of the Vc via the activation of non-NMDA glutamate receptor as well as an inhibitory effect by activation of the $GABA_A$ receptor, indicating the KRG has both stimulatory and inhibitory effects on the CNS. In addition, KRG may be a potential target for modulating orofacial pain processing.

NMDA (n-methyl-d-aspartate) Change Expression Level of Transcription Factors (Egr-1, c-jun, Junb, Fosb) mRNA in the Cerebellum Tissue of Balb/c Mouse (NMDA투여에 의한 transcription factor (Egr-1, C-Jun, JunB, FosB)의 발현 변화 양상)

  • Ha, Jong-Su;Kim, Jae-Wha;Song, Jae-Chan
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1043-1050
    • /
    • 2015
  • Glutamate is one of the principle transmitters in the CNS. Ionotropic receptors of glutamate, selectively activated by N-methyl-D-aspartate (NMDA), play an important role in the processes of cell development, learning, memory, and etc. On the other hand, many studies discovered that over-activation of glutamate receptors leads to neurodegeneration and are known to be implicated in major areas of brain pathology. Any sustained effect of a transient NMDA receptor activation is likely to involve signaling to the nucleus and to trigger coordinated changes in gene expression. Classically, a set of immediate-early genes are induced first; some of genes are by themselves transcription factors that control expression of other target genes. This study provides understanding of changes of inducible transcription factors mRNA levels with RT-PCR by inducing over-activation of NMDA receptor with intraperitoneal NMDA injection. The experimental conditions were varied by 1, 5, 25, and 125 g/ of body weight NMDA and measured transcription factors mRNA levels are Egr-1, c-Jun, JunB, and FosB. Based on result obtained, inducible transcription factors mRNA in NMDA injection to mice with 5 g/body weight showed the greatest change. And ITF mRNA showed greatest change 24 hr after injection. The expression level of JunB mRNA was markedly changed. Up to the present days, no study clearly understood how ITF mRNA affected the apoptosis of purkinje cells in the cerebellum. The current study improves the understanding of the mechanism of apoptosis of purkinje cells in the cerebellum.