• 제목/요약/키워드: N-gram matching

검색결과 9건 처리시간 0.021초

음소인식 오류에 강인한 N-gram 기반 음성 문서 검색 (N-gram Based Robust Spoken Document Retrievals for Phoneme Recognition Errors)

  • 이수장;박경미;오영환
    • 대한음성학회지:말소리
    • /
    • 제67호
    • /
    • pp.149-166
    • /
    • 2008
  • In spoken document retrievals (SDR), subword (typically phonemes) indexing term is used to avoid the out-of-vocabulary (OOV) problem. It makes the indexing and retrieval process independent from any vocabulary. It also requires a small corpus to train the acoustic model. However, subword indexing term approach has a major drawback. It shows higher word error rates than the large vocabulary continuous speech recognition (LVCSR) system. In this paper, we propose an probabilistic slot detection and n-gram based string matching method for phone based spoken document retrievals to overcome high error rates of phone recognizer. Experimental results have shown 9.25% relative improvement in the mean average precision (mAP) with 1.7 times speed up in comparison with the baseline system.

  • PDF

n-gram/2L: 공간 및 시간 효율적인 2단계 n-gram 역색인 구조 (n-Gram/2L: A Space and Time Efficient Two-Level n-Gram Inverted Index Structure)

  • 김민수;황규영;이재길;이민재
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권1호
    • /
    • pp.12-31
    • /
    • 2006
  • n-gram 기반 역색인 구조는 언어 중립적이고 에러 허용적인 장점들로 인해 일부 아시아권 언어에 대한 정보 검색이나 단백질과 DNA의 sequence의 근사 문자열 매칭에 유용하게 사용되고 있다. 그러나, n-gram 기반의 역색인 구조는 색인의 크기가 크고 질의 처리 시간이 오래 걸린다는 단점들을 가지고 있다. 이에 본 논문에서는 n-gram 기반 역색인의 장점을 그대로 유지하면서 색인의 크기를 줄이고 질의 처리 성능을 향상시킨 2단계 n-gram 역색인(간단히 n-gram/2L 역색인이라 부른다)을 제안한다. n-gram/2L 역색인은 n-gram 기반 역색인에 존재하던 위치 정보의 중복을 제거한다. 이를 위해 문서로부터 길이 m의 m-subsequence들을 추출하고, 그 m-subsequence들로부터 n-gram을 추출하여 2단계로 역색인을 구성한다. 이러한 2단계 구성 방법은 이론적으로 의미 있는 다치 종속성이 존재하는 릴레이션을 정규화하여 중복을 제거하는 것과 동일하며, 이를 본문에서 정형적으로 증명한다. n-gram/2L 역색인은 데이타의 크기가 커질 수록 n-gram 역색인에 비해 색인 크기가 줄어들며 질의 처리 성능이 향상되고, 질의 문자열의 길이가 길어져도 질의 처리 시간이 거의 증가하지 않는 좋은 특성을 가진다. 1GByte 크기의 데이타에 대한 실험을 통하여, n-gram/2L 역색인은 n-gram 기반 역색인에 비해 최대 1.9${\~}$2.7배 더 작은 크기를 가지면서, 동시에 질의 처리 성능은 3${\~}$18 범위의 길이를 가지는 질의들에 대해 최대 13.1배 향상됨을 보였다.

n-Gram 색인화와 Support Vector Machine을 사용한 스팸메일 필터링에 대한 연구 (A study on the Filtering of Spam E-mail using n-Gram indexing and Support Vector Machine)

  • 서정우;손태식;서정택;문종섭
    • 정보보호학회논문지
    • /
    • 제14권2호
    • /
    • pp.23-33
    • /
    • 2004
  • 인터넷 환경의 급속한 발전으로 인하여 이메일을 통한 메시지 교환은 급속히 증가하고 있다. 그러나 이메일의 편리성에도 불구하고 개인이나 기업에서는 스팸메일로 인한 시간과 비용의 낭비가 크게 증가하고 있다. 이러한 스팸메일에 대한 문제들을 해결하기 위하여 많은 방법들이 연구되고 있으며, 대표적인 방법으로 키워드를 이용한 패턴매칭이나 나이의 베이지안 방식과 같은 확률을 이용한 방법들이 있다. 본 논문에서는 기존의 연구에 대한 문제점을 보완하기 위하여 패턴 분류문제에 있어서 우수한 성능을 보이는 Support Vector Machine을 사용하여 정상적인 메일과 스팸메일을 분류하는 방안을 제시하였으며, 특히 n-Gram을 사용하여 생성된 색인어와 단어사전을 학습데이터 생성에 사용함으로서 효율적인 학습을 수행하도록 하였다. 결론에서는 제안된 방법에 대한 성능을 검증하기 위하여 기존의 연구 결과와 비교함으로서 제안된 방법의 성능을 검증하였다.

우편주소정보 추출모듈 개발 및 평가 (Development and Evaluation of Information Extraction Module for Postal Address Information)

  • 신현경;김현석
    • 창의정보문화연구
    • /
    • 제5권2호
    • /
    • pp.145-156
    • /
    • 2019
  • 본 연구에서는 명명된 실체 인식 기법에 기초한 정보 추출 모듈을 개발하고 평가하였다. 본 논문의 제시된 목적을 위해, 모듈은 사전 지식 없이 임의의 문서에서 우편 주소 정보를 추출하는 문제에 적용하도록 설계되었다. 정보 기술 실무의 관점에서, 우리의 접근방식은 유니그램 기반 키워드 매칭과 비교하여 일반화된 기법인 확률론적 n-gram(바이오그램 또는 트리그램) 방법이라고 말할 수 있다. 모델을 순차적으로 적용하지 않고 문장검출, 토큰화, POS 태그를 재귀적으로 적용하는 것이 우리의 접근법과 자연어 처리에 채택된 전통적인 방법 사이의 주요한 차이점이다. 이 논문에서는 약 2천 개의 문서를 포함한 시험 결과를 제시한다.

집합 기반 POI 검색을 이용한 문장 유사도 측정 기법 (Sentence Similarity Measurement Method Using a Set-based POI Data Search)

  • 고은별;이종우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제20권12호
    • /
    • pp.711-716
    • /
    • 2014
  • 최근 논문 표절 논란과 지능형 텍스트 검색서비스에 대한 관심이 증가하면서 문장 유사도 측정의 필요성이 증가하고 있다. n-gram, 편집거리, LSA 등 기존의 다양한 방향으로 선행 연구가 있었지만 각 기법마다 장단점이 존재한다. 본 논문에서는 집합 기반 POI 검색 기법을 이용한 새로운 방향의 문장 유사도 측정 기법을 제안한다. 집합 기반 POI 검색 기법은 하드매칭에 비해 단어의 도치, 누락, 삽입, 변경에 현저한 성능 향상을 보인다. 이 기법을 이용하면 보다 정확하고 빠른 문장 유사도 측정이 가능하다. 제안하는 기법은 기존 집합 기반 POI 검색 기법의 데이터 로딩 알고리즘과 텍스트 검색 알고리즘을 변형하고 어절 연산 알고리즘을 추가하여 두 문장의 유사도를 백분율로 표현한다. 실험을 통해 본 논문에서 제시하는 기법이 정확도와 속도에서 n-gram과 기존 집합 기반 POI 검색 기법에 비해 우수함을 확인하였다.

Route matching delivery recommendation system using text similarity

  • Song, Jeongeun;Song, Yoon-Ah
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.151-160
    • /
    • 2022
  • 본 연구에서는 급증하는 배송 서비스 수요에 맞춰 더 신속하고 최저 비용으로 근거리 배송을 가능하게 하는 알고리즘을 제안하고자 한다. 본 연구에서 제안하는 알고리즘에서는 배송원으로 지하철 승객을 물류 이동에 참여시킨다. 이때 승객은 이동 경로와 일치하는 배송 물류를 선택할 수 있다. 그리고 서비스 이용자의 입장에서는 현재 근처에 경로가 일치하는 배송원을 선택할 수 있다. 이때 배송원 추천은 TF-IDF&N-gram과 BERT를 결합한 텍스트 유사도 측정 방식으로 진행된다. 따라서 기존 택배 시스템과 달리 소비자-배송원 간의 man-to-man 방식으로 양방향 선택을 지원한다. 탑승 중인 승객을 물류 이동에 참여시킨다는 점에서 비용 최소화와 배송 기간 단축을 모두 보장할 수 있다. 더하여 운송 측면에서도 특별한 기술을 요하지 않으므로, 일자리 입지가 축소된 노동자들에게 경제 참여 기회를 제공할 수 있다는 점에서도 의의가 있다.

내용기반 음악검색 시스템의 비교 분석 (A Comparative Analysis of Content-based Music Retrieval Systems)

  • 노정순
    • 정보관리학회지
    • /
    • 제30권3호
    • /
    • pp.23-48
    • /
    • 2013
  • 본 연구는 웹에서 접근 가능한 내용기반 음악검색(CBMR) 시스템들을 조사하여, 탐색질의의 종류, 접근점, 입출력, 탐색기능, 데이터베이스 성격과 크기 등의 관점에서 특성을 비교 분석하고자 하였다. 비교 분석에 사용된 특성을 추출하기 위해 내용기반 음악정보의 특성과 시스템 구축에 필요한 파일의 변환, 멜로디 추출 및 분할, 색인자질 추출과 색인, 매칭에 사용되는 기술들을 선행연구로 리뷰하였다. 15개의 시스템을 분석한 결과 다음과 같은 특성과 문제점이 분석되었다. 첫째, 도치색인, N-gram 색인, 불리언 탐색, 용어절단검색, 키워드 및 어구 탐색, 음길이 정규화, 필터링, 브라우징, 편집거리, 정렬과 같은 텍스트 정보 검색 기법이 CBMR에서도 검색성능을 향상시키는 도구로 사용되고 있었다. 둘째, 시스템들은 웹에서 크롤링하거나 탐색질의를 DB에 추가하는 등으로 DB의 성장과 실용성을 위한 노력을 하고 있었다. 셋째, 개선되어야 할 문제점으로 선율이나 주선율을 추출하는데 부정확성, 색인자질을 추출할 때 사용되는 불용음(stop notes)을 탐색질의에서도 자동 제거할 필요성, 옥타브를 무시한 solfege 검색의 문제점 등이 분석되었다.

Modern Methods of Text Analysis as an Effective Way to Combat Plagiarism

  • Myronenko, Serhii;Myronenko, Yelyzaveta
    • International Journal of Computer Science & Network Security
    • /
    • 제22권8호
    • /
    • pp.242-248
    • /
    • 2022
  • The article presents the analysis of modern methods of automatic comparison of original and unoriginal text to detect textual plagiarism. The study covers two types of plagiarism - literal, when plagiarists directly make exact copying of the text without changing anything, and intelligent, using more sophisticated techniques, which are harder to detect due to the text manipulation, like words and signs replacement. Standard techniques related to extrinsic detection are string-based, vector space and semantic-based. The first, most common and most successful target models for detecting literal plagiarism - N-gram and Vector Space are analyzed, and their advantages and disadvantages are evaluated. The most effective target models that allow detecting intelligent plagiarism, particularly identifying paraphrases by measuring the semantic similarity of short components of the text, are investigated. Models using neural network architecture and based on natural language sentence matching approaches such as Densely Interactive Inference Network (DIIN), Bilateral Multi-Perspective Matching (BiMPM) and Bidirectional Encoder Representations from Transformers (BERT) and its family of models are considered. The progress in improving plagiarism detection systems, techniques and related models is summarized. Relevant and urgent problems that remain unresolved in detecting intelligent plagiarism - effective recognition of unoriginal ideas and qualitatively paraphrased text - are outlined.

허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법 (An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System)

  • 유진희;박상현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권4호
    • /
    • pp.283-303
    • /
    • 2007
  • 최근 방대한 양의 음악데이타를 효율적으로 저장하고 검색하기 위한 방법의 필요성이 증대되고 있다. 현재 음악 데이타 검색에서 가장 일반적으로 쓰이는 방법은 텍스트 기반의 검색 방법이다. 그러나 이러한 방법은 사용자가 키워드를 기억하지 못할 경우 검색이 어려울 뿐만 아니라 키워드와 정확하게 일치하는 정보만 검색해 주기 때문에 유사한 내용을 가진 정보를 검색하기에 부적절하다. 이러한 문제점을 해결하기 위해 본 논문에서는 내용 기반 인덱싱 방법(Content-Based Indexing Method)을 사용하여 사용자가 부정확한 멜로디(Humming)로 질의하였을 경우라도 원하는 음악을 효율적으로 찾아주는 허밍 질의처리 시스템(Query-By-Humming System)을 설계한다. 이를 위해 방대한 음악 데이타베이스에서 한 음악을 대표하는 의미 있는 멜로디를 추출하여 인덱싱하는 방법을 제안한다. 본 논문에서는 이러한 의미 있는 멜로디를 사용자가 자주 질의할 가능성이 높은 멜로디로서 하나의 음악에서 여러 번 나타나는 반면 멜로디와 긴 쉼표 후에 시작되는 쉼표 단위 멜로디로 정의한다. 실험을 통해 사용자들이 이들 멜로디를 자주 질의한다는 가정을 증명하였다. 본 논문은 성능 향상을 위한 3가지 방법을 제안한다. 첫 번째는 검색속도를 높이기 위해 인덱스에 저장할 멜로디를 문자열 형태로 변환한다. 이때 사용되는 문자 변환 방법은 허밍에 포함된 에러를 허용한 방법으로써 검색 결과의 정확도를 높일 수 있다. 두 번째는 사용자가 자주 질의할 가능성이 높은 의미 있는 멜로디를 인덱싱 하여 검색 속도를 높이고자 한다. 이를 위해 신뢰도가 높은 의미 있는 멜로디를 생성하는 빈번 멜로디 추출 알고리즘과 쉼표 단위 멜로디 추출 방법을 제안한다. 세 번째로는 정확도를 향상시키기 위한 3단계 검색 방법을 제안한다. 이는 데이타베이스 접근을 최소화하여 정확한 검색 결과를 얻기 위하여 제안되었다. 또한 기존 허밍 질의 처리 시스템의 대표적인 인덱싱 방법으로 제안되었던 N-gram 방법과의 성능 비교를 통해 본 논문이 제안하는 방법의 성능이 보다 더 향상되었음을 검증하였다.