• Title/Summary/Keyword: N-gram matching

Search Result 9, Processing Time 0.027 seconds

N-gram Based Robust Spoken Document Retrievals for Phoneme Recognition Errors (음소인식 오류에 강인한 N-gram 기반 음성 문서 검색)

  • Lee, Su-Jang;Park, Kyung-Mi;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.149-166
    • /
    • 2008
  • In spoken document retrievals (SDR), subword (typically phonemes) indexing term is used to avoid the out-of-vocabulary (OOV) problem. It makes the indexing and retrieval process independent from any vocabulary. It also requires a small corpus to train the acoustic model. However, subword indexing term approach has a major drawback. It shows higher word error rates than the large vocabulary continuous speech recognition (LVCSR) system. In this paper, we propose an probabilistic slot detection and n-gram based string matching method for phone based spoken document retrievals to overcome high error rates of phone recognizer. Experimental results have shown 9.25% relative improvement in the mean average precision (mAP) with 1.7 times speed up in comparison with the baseline system.

  • PDF

n-Gram/2L: A Space and Time Efficient Two-Level n-Gram Inverted Index Structure (n-gram/2L: 공간 및 시간 효율적인 2단계 n-gram 역색인 구조)

  • Kim Min-Soo;Whang Kyu-Young;Lee Jae-Gil;Lee Min-Jae
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.12-31
    • /
    • 2006
  • The n-gram inverted index has two major advantages: language-neutral and error-tolerant. Due to these advantages, it has been widely used in information retrieval or in similar sequence matching for DNA and Protein databases. Nevertheless, the n-gram inverted index also has drawbacks: the size tends to be very large, and the performance of queries tends to be bad. In this paper, we propose the two-level n-gram inverted index (simply, the n-gram/2L index) that significantly reduces the size and improves the query performance while preserving the advantages of the n-gram inverted index. The proposed index eliminates the redundancy of the position information that exists in the n-gram inverted index. The proposed index is constructed in two steps: 1) extracting subsequences of length m from documents and 2) extracting n-grams from those subsequences. We formally prove that this two-step construction is identical to the relational normalization process that removes the redundancy caused by a non-trivial multivalued dependency. The n-gram/2L index has excellent properties: 1) it significantly reduces the size and improves the Performance compared with the n-gram inverted index with these improvements becoming more marked as the database size gets larger; 2) the query processing time increases only very slightly as the query length gets longer. Experimental results using databases of 1 GBytes show that the size of the n-gram/2L index is reduced by up to 1.9${\~}$2.7 times and, at the same time, the query performance is improved by up to 13.1 times compared with those of the n-gram inverted index.

A study on the Filtering of Spam E-mail using n-Gram indexing and Support Vector Machine (n-Gram 색인화와 Support Vector Machine을 사용한 스팸메일 필터링에 대한 연구)

  • 서정우;손태식;서정택;문종섭
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2004
  • Because of a rapid growth of internet environment, it is also fast increasing to exchange message using e-mail. But, despite the convenience of e-mail, it is rising a currently bi9 issue to waste their time and cost due to the spam mail in an individual or enterprise. Many kinds of solutions have been studied to solve harmful effects of spam mail. Such typical methods are as follows; pattern matching using the keyword with representative method and method using the probability like Naive Bayesian. In this paper, we propose a classification method of spam mails from normal mails using Support Vector Machine, which has excellent performance in pattern classification problems, to compensate for the problems of existing research. Especially, the proposed method practices efficiently a teaming procedure with a word dictionary including a generated index by the n-Gram. In the conclusion, we verified the proposed method through the accuracy comparison of spm mail separation between an existing research and proposed scheme.

Development and Evaluation of Information Extraction Module for Postal Address Information (우편주소정보 추출모듈 개발 및 평가)

  • Shin, Hyunkyung;Kim, Hyunseok
    • Journal of Creative Information Culture
    • /
    • v.5 no.2
    • /
    • pp.145-156
    • /
    • 2019
  • In this study, we have developed and evaluated an information extracting module based on the named entity recognition technique. For the given purpose in this paper, the module was designed to apply to the problem dealing with extraction of postal address information from arbitrary documents without any prior knowledge on the document layout. From the perspective of information technique practice, our approach can be said as a probabilistic n-gram (bi- or tri-gram) method which is a generalized technique compared with a uni-gram based keyword matching. It is the main difference between our approach and the conventional methods adopted in natural language processing that applying sentence detection, tokenization, and POS tagging recursively rather than applying the models sequentially. The test results with approximately two thousands documents are presented at this paper.

Sentence Similarity Measurement Method Using a Set-based POI Data Search (집합 기반 POI 검색을 이용한 문장 유사도 측정 기법)

  • Ko, EunByul;Lee, JongWoo
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.12
    • /
    • pp.711-716
    • /
    • 2014
  • With the gradual increase of interest in plagiarism and intelligent file content search, the demand for similarity measuring between two sentences is increasing. There is a lot of researches for sentence similarity measurement methods in various directions such as n-gram, edit-distance and LSA. However, these methods have their own advantages and disadvantages. In this paper, we propose a new sentence similarity measurement method approaching from another direction. The proposed method uses the set-based POI data search that improves search performance compared to the existing hard matching method when data includes the inverse, omission, insertion and revision of characters. Using this method, we are able to measure the similarity between two sentences more accurately and more quickly. We modified the data loading and text search algorithm of the set-based POI data search. We also added a word operation algorithm and a similarity measure between two sentences expressed as a percentage. From the experimental results, we observe that our sentence similarity measurement method shows better performance than n-gram and the set-based POI data search.

Route matching delivery recommendation system using text similarity

  • Song, Jeongeun;Song, Yoon-Ah
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.151-160
    • /
    • 2022
  • In this paper, we propose an algorithm that enables near-field delivery at a faster and lowest cost to meet the growing demand for delivery services. The algorithm proposed in this study involves subway passengers (shipper) in logistics movement as delivery sources. At this time, the passenger may select a delivery logistics matching subway route. And from the perspective of the service user, it is possible to select a delivery man whose route matches. At this time, the delivery source recommendation is carried out in a text similarity measurement method that combines TF-IDF&N-gram and BERT. Therefore, unlike the existing delivery system, two-way selection is supported in a man-to-man method between consumers and delivery man. Both cost minimization and delivery period reduction can be guaranteed in that passengers on board are involved in logistics movement. In addition, since special skills are not required in terms of transportation, it is also meaningful in that it can provide opportunities for economic participation to workers whose job positions have been reduced.

A Comparative Analysis of Content-based Music Retrieval Systems (내용기반 음악검색 시스템의 비교 분석)

  • Ro, Jung-Soon
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.3
    • /
    • pp.23-48
    • /
    • 2013
  • This study compared and analyzed 15 CBMR (Content-based Music Retrieval) systems accessible on the web in terms of DB size and type, query type, access point, input and output type, and search functions, with reviewing features of music information and techniques used for transforming or transcribing of music sources, extracting and segmenting melodies, extracting and indexing features of music, and matching algorithms for CBMR systems. Application of text information retrieval techniques such as inverted indexing, N-gram indexing, Boolean search, truncation, keyword and phrase search, normalization, filtering, browsing, exact matching, similarity measure using edit distance, sorting, etc. to enhancing the CBMR; effort for increasing DB size and usability; and problems in extracting melodies, deleting stop notes in queries, and using solfege as pitch information were found as the results of analysis.

Modern Methods of Text Analysis as an Effective Way to Combat Plagiarism

  • Myronenko, Serhii;Myronenko, Yelyzaveta
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.242-248
    • /
    • 2022
  • The article presents the analysis of modern methods of automatic comparison of original and unoriginal text to detect textual plagiarism. The study covers two types of plagiarism - literal, when plagiarists directly make exact copying of the text without changing anything, and intelligent, using more sophisticated techniques, which are harder to detect due to the text manipulation, like words and signs replacement. Standard techniques related to extrinsic detection are string-based, vector space and semantic-based. The first, most common and most successful target models for detecting literal plagiarism - N-gram and Vector Space are analyzed, and their advantages and disadvantages are evaluated. The most effective target models that allow detecting intelligent plagiarism, particularly identifying paraphrases by measuring the semantic similarity of short components of the text, are investigated. Models using neural network architecture and based on natural language sentence matching approaches such as Densely Interactive Inference Network (DIIN), Bilateral Multi-Perspective Matching (BiMPM) and Bidirectional Encoder Representations from Transformers (BERT) and its family of models are considered. The progress in improving plagiarism detection systems, techniques and related models is summarized. Relevant and urgent problems that remain unresolved in detecting intelligent plagiarism - effective recognition of unoriginal ideas and qualitatively paraphrased text - are outlined.

An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System (허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법)

  • You, Jin-Hee;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.283-303
    • /
    • 2007
  • Recently, the study of efficient way to store and retrieve enormous music data is becoming the one of important issues in the multimedia database. Most general method of MIR (Music Information Retrieval) includes a text-based approach using text information to search a desired music. However, if users did not remember the keyword about the music, it can not give them correct answers. Moreover, since these types of systems are implemented only for exact matching between the query and music data, it can not mine any information on similar music data. Thus, these systems are inappropriate to achieve similarity matching of music data. In order to solve the problem, we propose an Efficient Query-By-Humming System (EQBHS) with a content-based indexing method that efficiently retrieve and store music when a user inquires with his incorrect humming. For the purpose of accelerating query processing in EQBHS, we design indices for significant melodies, which are 1) frequent melodies occurring many times in a single music, on the assumption that users are to hum what they can easily remember and 2) melodies partitioned by rests. In addition, we propose an error tolerated mapping method from a note to a character to make searching efficient, and the frequent melody extraction algorithm. We verified the assumption for frequent melodies by making up questions and compared the performance of the proposed EQBHS with N-gram by executing various experiments with a number of music data.