• Title/Summary/Keyword: N-glycan

Search Result 42, Processing Time 0.029 seconds

Functional Characterization and Application of the HpOCH2 Gene, Encoding an Initiating $\alpha$l,6-Mannosyltransferase, for N-glycan Engineering in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Moo-Woong;Kim, Eun-Jung;Kim, Jeong-Yoon;Rhee, Sang-Ki;Kang, Hyun-Ah
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.278-281
    • /
    • 2004
  • The $\alpha$1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 plays a key role for the outer chain initiation of the N-linked oligosaccharides. A search for Hansenula polymorpha genes homologous to S. cerevisiae OCHI (ScOCH1) has revealed seven open reading frames (ORF100, ORF142, ORF168, ORF288, ORF379, ORF576, ORF580). All of the seven ORFs are predicted to be a type II integral membrane protein containing a transmembrane domain near the amino-terminal region and has a DXD motif, which has been found in the active site of many glycosyltransferases. Among this seven-membered OCH1 gene family of H. polymorpha, we have carried out a functional analysis of H. polymorpha ORF168 (HpOCH2) showing the highest identity to ScOCH1. Inactivation of this protein by disruption of corresponding gene resulted in several phenotypes suggestive of cell wall defects, including hypersensitivity to hygromycin B and sodium deoxycholate. The structural analysis of N-glycans synthesized in HpOCH2-disrupted strain (Hpoch2Δ) and the in vitro $\alpha$1,6-mannosyltransferase activity assay strongly indicate that HpOch2p is a key enzyme adding the first $\alpha$1,6-mannose residue on the core glycan Man$_{8}$GlcNAc$_2$. The Hpoch2Δ was further genetically engineered to synthesize a recombinant glycoprotein with the human compatible N-linked oligosaccharide, Man$_{5}$GlcNAc$_2$, by overexpression of the Aspergillus saitoi $\alpha$1,2-mannosidase with the 'HDEL” ER retention signal.gnal.

  • PDF

Engineering Human-like Sialylation in CHO Cells Producing hCTLA4-Ig by Overexpressing α2,6-Sialyltransferase (α2,6-Sialyltransferase 과발현을 통한 인간형 시알산 부가 hCTLA4-Ig 생산 CHO 세포주 제작)

  • Lim, Jin-Hyuk;Cha, Hyun-Myoung;Park, Heajin;Kim, Ha Hyung;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.193-198
    • /
    • 2017
  • Sialylation is important in producing therapeutic proteins such as antibody, cytokine and fusion protein. Thus, enhancement of sialylation is usually performed in CHO cell cultures. ${\alpha}2,6$-Sialyltransferase (ST), which plays a key role in the attachment of ${\alpha}2,6-sialic$ acid, is present in human cells but not in Chinese hamster ovary (CHO) cells. Overexpression of ${\alpha}2,6-ST$ can be used for enhancing the degree of sialylation and achieving human-like glycosylation. In this study, we constructed CHO cells producing human cytotoxic T-lymphocyte antigen4-immunoglobulin (hCTLA4-Ig) as well as ${\alpha}2,6-ST$. Transfected CHO cells were selected using G418 and stable cell line was established. Profiles of viable cell density and hCTLA4-Ig titer in an overexpressed cell line were similar to those of a wild-type cell line. It was confirmed that the total amount of sialic acid was increased and ${\alpha}2,6-sialic$ acid was attached to the terminal residues of N-glycan of hCTLA4-Ig by ESI-LC-MS. Compared to 100% of ${\alpha}2,3-sialic$ acid in wild type cells, 70.9% of total sialylated N-glycans were composed of ${\alpha}2,6-sialic$ acid in transfected cells. In conclusion, overexpression of ${\alpha}2,6-ST$ in CHO cells led to the increase of both the amount of total sialylated N-glycan and the content of ${\alpha}2,6-sialic$ acid, which is more resemble to human-like structure of glycosylation.

Differential Expression of O-glycoprotein Glycans in Cholangiocarcinoma Cell Lines

  • Talabnin, Krajang;Talabnin, Chutima;Ishihara, Mayumi;Azadi, Parastoo;Wongkham, Sopit;Sripa, Banchob
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.691-695
    • /
    • 2016
  • Protein glycosylation is the most common posttranslational modification in mammalian cells. Aberrant protein glycosylation has been reported in various diseases, including cancer. We identified and quantified the glycan structures of O-linked glycoprotein from cholangiocarcinoma (CCA) cell lines from different histological types and compared their profiles by nanospray ionization-linear ion trap mass spectrometry (NSI-$MS^n$). Five human CCA cell lines, K100, M055, M139, M213 and M214 were characterized. The results showed that the O-linked glycans of the CCA cell lines comprised tri- to hexa-saccharides with terminal galactose and sialic acids: NeuAc1Gal1GalNAc1, Gal2GlcNAc1GalNAc1, NeuAc2Gal1GalNAc1 NeuAc1Gal2GlcNAc1GalNAc1 and NeuAc2Gal2GlcNAc1GalNAc1 All five CCA cell lines showed a similar glycan pattern, but with differences in their quantities. NeuAc1Gal1GalNAc1 proved to be the most abundant structure in poorly differentiated adenocarcinoma (K100; 57.1%), moderately differentiated adenocarcinoma (M055; 42.6%) and squamous cell carcinoma (M139; 43.0%), while moderately to poorly differentiated adenocarcinoma (M214; 40.1%) and adenosquamous cell carcinoma (M213; 34.7%) appeared dominated by $NeuA_{c2}Gal_1GalNA_{c1}$. These results demonstrate differential expression of the O-linked glycans in the different histological types of CCA. All five CCA cell lines have abundant terminal sialic acid (NeuAc) O-linked glycans, suggesting an important role for sialic acid in cancer cells. Our structural analyses of glycans may provide important information regarding physiology of disease-related glycoproteins in CCA.

Expression and Characterization of Human N-Acetylglucosaminyltransferases and ${\alpha}$2,3-Sialyltransferase in Insect Cells for In Vitro Glycosylation of Recombinant Erythropoietin

  • Kim, Na-Young;Kim, Hyung-Gu;Kim, Yang-Hyun;Chung, In-Sik;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.383-391
    • /
    • 2008
  • The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed in mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennarytype complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using a pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of Nacetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using $UDP-^{14}C-Gal\;and\;CMP-^{14}C-Sia$ as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the ed blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.

Enhanced Sialylation of Albumin-erythropoietin by Biphasic Cultivation in CHO Cells (CHO 세포의 2단계 배양을 통한 Albumin-erythropoietin의 시알산 증대)

  • Lim, Jin-Hyuk;Shin, Soo-Ah;Cha, Hyun-Myoung;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • In glycoprotein, Terminal sialic acid residues of N-linked glycan are imperative things because they prevent the recognition from asialoglycoprotein-receptor that affect the half-life of glycoproteins. So establishment of culture process for enhancing sialic acid is important to maximize sialic acid contents of glycoprotein. In this study, we investigated effects of biphasic culture of Chinese hamster ovary (CHO) cells producing albumin-erythropoietin to increase sialylation. Biphasic cultures were performed with shift of $CO_2$ concentrations and temperatures at day 5 when viable cell density was decreased and sialidase was started to be released by cell lysis. The examined temperature set points were 33, 35 and $37^{\circ}C$ respectively and the $CO_2$ concentration was 1, 5, 10 and 15%. We confirmed that sialidase activity was the lowest in biphasic culture that was shifted from normal culture condition to 1% of $CO_2$ and $33^{\circ}C$ on day 5. However, the temperature and concentration of $CO_2$ have little effect on activity of ${\alpha}2,3$-sialyltransferase. Also, sialic acid contents were enhanced 1.13-fold higher than that in control culture. In conclusion, Biphasic cultivation in CHO cells led to inhibition of sialidase activity and increases of sialylated glycan.

A Comparative Analysis of Monofunctional Biosynthetic Peptidoglycan Transglycosylase (MBPT) from Pathogenic and Non-pathogenic Bacteria

  • Baker, Andrew T.;Takahashi, Natsumi;Chandra, Sathees B.
    • Genomics & Informatics
    • /
    • v.8 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • Monofunctional biosynthetic peptidoglycan transglycosylase (MBPT) catalyzes the formation of the glycan chain in bacterial cell walls from peptidoglycan subunits: N-acetylglucosamine (NAG) and acetylmuramic acid (NAM). Bifunctional glycosyltransferases such as the penicillin binding protein (PBP) have peptidoglycan glycosyltransferase (PGT) on their C terminal end which links together the peptidoglycan subunits while transpeptidase (TP) on the N terminal end cross-links the peptide moieties on the NAM monosaccharide of the peptide subunits to create the bacterial cell wall. The singular function of MBPT resembles the C terminal end of PBP as it too contains and utilizes a similar PGT domain. In this article we analyzed the infectious and non infectious protein sequences of MBPT from 31 different strains of bacteria using a variety of bioinformatic tools. Motif analysis, dot-plot comparison, and phylogenetic analysis identified a number of significant differences between infectious and non-infectious protein sequences. In this paper we have made an attempt to explain, analyze and discuss these differences from an evolutionary perspective. The results of our sequence analysis may open the door for utilizing MBPT as a new target to fight a variety of infectious bacteria.

Relative Quantification of Glycans by Metabolic Isotope Labeling with Isotope Glucose in Aspergillus niger

  • Choi, Soo-Hyun;Cho, Ye-Eun;Kim, Do-Hyun;Kim, Jin-il;Yun, Jihee;Jo, Jae-Yoon;Lim, Jae-Min
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.139-145
    • /
    • 2022
  • Protein glycosylation is a common post-translational modification by non-template-based biosynthesis. In fungal biotechnology, which has great applications in pharmaceuticals and industries, the importance of research on fungal glycoproteins and glycans is accelerating. In particular, the importance of quantitative analysis of fungal glycans is emerging in research on the production of filamentous fungal proteins by genetic modification. Reliable mass spectrometry-based techniques for quantitative glycomics have evolved into chemical, enzymatic, and metabolic stable isotope labeling methods. In this study, we intend to expand quantitative glycomics by metabolic isotope labeling of glycans in Aspergillus niger, a filamentous fungus model, by the MILPIG method. We demonstrate that incubation of filamentous fungi in a culture medium with carbon-13 labeled glucose (1-13C1) efficiently incorporates carbon-13 into N-linked glycans. In addition, for quantitative validation of this method, light and heavy glycans are mixed 1:1 to show the performance of quantitative analysis of various N-linked glycans simultaneously. We have successfully quantified fungal glycans by MILPIG and expect it to be widely applicable to glycan expression levels under various biological conditions in fungi.