N-Glycan Patterns of Human Transferrin Produced in Insect Cells Expressing Stably Rat \$1,4-Galactosyltransferase and Human a2,6-Sialyltransferase Eun-Young Yun^{1*}, Tae-Won Goo¹, Myoung-Ae Kim¹, Sung-Wan Kim¹, Jae-Sam Hwang¹, Seok-Woo Kang¹ and O-Yu Kwon² ¹Department of Agricultural Biology, NIAST, RDA, Suwon 441-100, Korea and ²Department of Anatomy, College of Medicine, Chungnam National University, Daejon 301-131, Korea The insect cell-baculovirus expression vector system (BEVS) is not ideal for pharmaceutical glycoprotein production due to the characteristics of the N-glycans in the expressed products. Insect cells lack several enzymes required for mammalian-type N-glycan synthesis. The BEVS was used to produce His-tagged human transferrin in a transformed insect cell line (Sf9-GalT,SiaT) that constitutively expresses a mammalian UDP-\(\beta-1,4\)-galactosyltransferase and \(\beta\)-galactoside a-2,6-sialyltransferase under the control of an immediate-early (ie2) promoter. This recombinant virus encoded the His-tagged human transferrin protein in conventional fashion under the control of the very late polyhedrin promoter. Detailed analyses by exoglycosidase digestion and two-dimensional HPLC revealed that the N-glycans on the purified recombinant human transferrin produced by this virus-host system included fully galactosylated and sialylated. Thus, this study describes a novel insect cell (Sf9-GalT,SiaT), which can be used to produce a recombinant glycoprotein with fully galactosylated and sialylated N-glycans. Supported by grants for the BioGreen 21 project from the Rural Development Administration