• Title/Summary/Keyword: N-ethylmaleimide

Search Result 64, Processing Time 0.024 seconds

Chemical Modification of Serratia marcescens Catabolic ${\alpha}-Acetolactate$ Synthase

  • Joo, Han-Seung;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.139-143
    • /
    • 1998
  • The catabolic ${\alpha}-acetolactate$ synthase purified from Serratia marcescens ATCC 25419 was rapidly inactivated by the tryptophane-specific reagent, N -bromosuccinimide, and the arginine-specific reagent, phenylglyoxal. The enzyme was inactivated slowly by the cysteine-specific reagent N-ethylmaleimide. The second-order rate constants for the inactivation by N-bromosuccinimide, phenylglyoxal. and N -ethylmaleimide were $114,749M^{-1}min^{-1}$, $304.3M^{-1}min^{-1}$, and $5.1M^{-1}min^{-1}$, respectively. The reaction order with respect to N-bromosuccinimide, phenylglyoxal, and N-ethylmaleimide were 1.5,0.71, and 0.86, respectively. The inactivation of the catabolic aacetolactate synthase by these modifying reagents was protected by pyruvate. These results suggest that essential tryptophane, arginine, and cysteine residues are located at or near the active site of the catabolic ${\alpha}-acetolactate$ synthase.

  • PDF

Chemical Modification of the $\beta$-D-Xylosidase from Bacillus stearothermophilus (화학적 수식에 의한 Bacillus stearothermophilus $\beta$-D-Xylosidase 의 연구)

  • 서정한;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.636-642
    • /
    • 1994
  • Essential amino acids involving in the catalytic mechanism of the $\beta$-D-xylosidase of Bacillus stearothermophilus were determined by chemical modification studies. Among various che- mical modifiers tested N-bromosuccinimide (NBS), $\rho$-hydroxymercurybenzoate (PHMB), N-ethylma- leimide, 1-[3-(di-ethylamino)-propyl]$-3-ethylcarbodi-imide (EDC), and Woodward's Reagent K(WRK)inactivated the enzyme, resulting in the residual activity of less than 20%. WRK reduced the enzyme activity by modifying carboxylic amino acids, and the inactivation reacion proceeded in the form of pseudo-first-order kinetics. The double-lagarithmic plot of the observed pseudo-first- order rate constant against the modifier concentration yielded a reaction order of 2, indicating that two carboxylic amino acids were essential for the enzyme activity. The $\beta$-D-xylosidase was also inactivated by N-ethylmaleimide which specifically modified a cysteine residue with a reaction order of 1, implying that one cysteine residue was important for the enzyme activity. Xylobiose protected the enzyme against inactivation by WRK and N-ethylmaleimide, revealing that carboxylic amino acids and a cysteine residue were present at the substrate-binding site of the enzyme molecule.

  • PDF

Arachidonic Acid Liberated through Activation of $iPLA_2$ Mediates the Production of Reactive Oxygen Species and Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.242.2-243
    • /
    • 2002
  • We have previously reported that activation of $K^{+}$-$Cl^{-}$-cotransport (KCC) by N-ethylmaleimide (NEM) induces apoptosis through generation of reactive oxygen species (ROS) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM actions. (omitted)

  • PDF

Myosin Heavy Chain Covalenily Modified at Its Reactive Site Sulfhydryl Residues is Preferentially Degraded by Calpain (활성화 부위의 황화기가 화학적으로 변형된 Myosin Heavy Chain의 Calpain에 의한 선택적 분해)

  • 곽규봉;정성수;이창호;하두봉;정진하
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.347-352
    • /
    • 1993
  • N-ethylmaleimide at low concentrations is known to interact specifically with 2 sulfhydryl residues in myosin heavy chain. Calpain, a Ca$^2$+-dependent neutral protease isolated from chick skeletal muscle, was found to preferentially degrade the alkylated protein but much less significantly the unmodified protein. Exposure of myosin to KMnO$_4$, which is also known to interact with sulthydryl groups, also caused the rapid degradation of the myosin heavy chain. Furthermore, treatment of each agent with increasing concentrations results in a greater loss of the myosin ATPase activity, indicating that the modification occurred at the reactive site sulfhydryl residues. These results suggest that the covalent modification at the reactive site salfhydryl residues in the myosin heavy chain may mark the protein for degradation by intracellular proteases such as calpain.

  • PDF

Arachidonic Acid Mediates Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 2009
  • We have previously reported that N-ethylmaleimide (NEM) induces apoptosis through activation of $K^+$, $Cl^-$-cotransport (KCC) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM-induced apoptosis. In these experiments we used arachidonyl trifluoromethylketone ($AACOCF_3$), bromoenol lactone (BEL) and p-bromophenacyl bromide (BPB) as inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$), the calcium-independent $PLA_2$ ($iPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. BEL significantly inhibited the NEM-induced apoptosis, whereas $AACOCF_3$ and BPB did not. NEM increased AA liberation in a dose-dependent manner, which was markedly prevented only by BEL. In addition AA by itself induced $K^+$ efflux, a hallmark of KCC activation, which was comparable to that of NEM. The NEM-induced apoptosis was not significantly altered by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with AA or 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, significantly induced apoptosis. Collectively, these results suggest that AA liberated through activation of $iPLA_2$ may mediate the NEMinduced apoptosis in HepG2 cells.

Functional Amino Acid Residues of Recombinant Tobacco Acetolactate Synthase

  • Chong, Chom-Kyu;Chang, Soo-Ik;Choi, Jung-Do
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.258-263
    • /
    • 1998
  • Acetolactate synthase (ALS) is the common enzyme in the biosynthetic pathways leading to leucine, valine, and isoleucine. Tobacco ALS was expressed in E. coli and purified to homogeneity. The recombinant tobacco ALS was inactivated by thiol-specific reagents, N-ethylmaleimide (NEM) and 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB). Inactivation of the ALS by NEM followed pseudo-first order kinetics and was first order with respect to the modifier. The substrate pyruvate protected the enzyme against the inactivation by NEM and DTNB. Extrapolation to complete inactivation of the enzyme by DTNB showed modification of approximately 2 out of 4 total cysteinyl residues (or 2 cysteinyl and 1 cysteinyl residues), with approximately 1 residue protected by pyruvate. The tobacco ALS was also inactivated by the tryptophanspecific reagent, N-bromosuccinimide (NBS), and was similarly protected by pyruvate. The kinetics of the inactivation was first-order with respect to NBS. The present data suggest that cysteinyl and tryptophanyl residues play a key role in the catalytic function of the enzyme.

  • PDF

Effect of N-ethylmaleimide(NEM) on $Na^+$ Transport Across the Frog Skin (N-ethylmaleimide(NEM)가 개구리 피부의 $Na^+$ 이동에 미치는 영향)

  • Song, Sun-Ok;Jung, Noh-Pal;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.13-22
    • /
    • 1979
  • Studies have been conducted using isolated surviving skin of Rana temporalia in an attempt to evaluate the effect of N-ethylmaleimide (NEM) on the epithelial $Na^+$ transport. Active transport of $Na^+$ across the skin was estimated by measuring short circuit current (SCC). NEM administered to the outside surface of the skin in concentration of $0.5{\times}10^{-4}-2.5{\times}10^{-4}M$ induced $20{\sim}40%$ increase during the first 30 mintues, followed by a gradual reduction in SCC. With NEM above $4{\times}10^{-4}M$, SCC was inhibited from the beginning. Qualitatively similar results were obtained when NEM was added to the inside bathing medium. However, the concentration of NEM for a similar effect was much higher with the drug in the inside bathing medium than in the outside bathing medium. The oxygen consumption of the skin was inhibited by NEM of above $10^{-4}M$, the effect being of approximately the same magnitude as that on SCC. The activity of $Na^+-K^+$ ATPase of the skin was not inhibited by NEM below $10^{-3}M$, but it was dramatically reduced with $1.2{\times}M$ NEM. The effects of NEM $(10^{-4}M)$ on the SCC and oxygen consumption could be eliminated by adding cysteine $(10^{-4}-10^{-3}M)$ in the medium, indicating that the SH group is involved in the action of NEM in the frog skin. On the basis of these results, the mode of action of NEM on the $Na^+$ transport across the frog skin was discussed.

  • PDF

Identification of Alkylation-Sensitive Target Chaperone Proteins and Their Reactivity with Natural Products Containing Michael Acceptor

  • Liu, Xi-Wen;Sok, Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1047-1054
    • /
    • 2003
  • Molecular chaperones have a crucial role in the folding of nascent polypeptides in endoplasmic reticulum. Some of them are known to be sensitive to the modification by electrophilic metabolites of organic pro-toxicants. In order to identify chaperone proteins sensitive to alkyators, ER extract was subjected to alkylation by 4-acetamido-4 -maleimidyl-stilbene-2,2 -disulfonate (AMS), and subsequent SDS-PAGE analyses. Protein spots, with molecular mass of 160, 100, 57 and 36 kDa, were found to be sensitive to AMS alkylation, and one abundant chaperon protein was identified to be protein disulfide isomerase (PDI) in comparison with the purified PDI. To see the reactivity of PDI with cysteine alkylators, the reduced form ($PDI_{red}$) of PDI was incubated with various alkylators containing Michael acceptor structure for 30 min at $38^{\circ}C$ at pH 6.3, and the remaining activity was determined by the insulin reduction assay. Iodoacetamide or N-ethylmaleimide at 0.1 mM remarkably inactivated $PDI_{red}$ with N-ethylmaleimide being more potent than iodoacetamide. A partial inactivation of $PDI_{oxid}$ was expressed by iodoacetamide, but not N-ethylmaleimide (NEM) at pH 6.3. Of Michael acceptor compounds tested, 1,4-benzoquinone ($IC_{50}, 15 \mu$ M) was the most potent, followed by 4-hydroxy-2-nonenal and 1,4-naphthoquinone. In contrast, 1,2-naphthoquinone, devoid of a remarkable inactivation action, was effective to cause the oxidative conversion of $PDI_{red}$ to $PDI_{oxid}$. Thus, the action of Michael acceptor compounds differed greatly depending on their structure. Based on these, it is proposed that POI, one of chaperone proteins in ER, could be susceptible to endogenous or xenobiotic Michael acceptor compounds in vivo system.

The Identification of Type II DNA Topoisomerase-Associated Protein Kinase Activity from Regenerating Rat Liver (재생 쥐간에서 분리한 DNA topoisomerase II에 결합된 protein kinase 활성)

  • 이치건;박세호;남궁록;김찬길;박상대
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.367-372
    • /
    • 1993
  • We have found a protein kinase activity that is tightly associated with type II DNA topoisomerase purified from regenerating rat liver. The activities of protein kinase and topoisomerase II were not separable when the enzyme was subjected to analytical chromatographies (Hydroxyapatite, phosphocellulose, and double strand DNA cellulose) and glycerol gradient sedimentation. The kinase activity from purified rat topoisomerase II was also inactivated by the topoisomerase II inhibitors such as N-ethylmaleimide or novobiocin. The evidences, however, do not rule out a possibility that the kinase activity resides in a polypeptide other than the topoisomerase II protein. The topoisomerase II-associated protein kinase required Mg++ for its activity, and this requirement was not substituted by any other mono- or divalent ions. Histone H1 act as a strong stimulator and a good substrate for the kinase activity and other histones and ${\alpha}$-casein could not substitute the effect of histone H1.

  • PDF

Change in the Conformation of $p47^{phox}$ by Sodium Dodecyl Sulfate, an Activator of the Leukocyte NADPH Oxidase

  • Park, Jeen-Woo;Park, Hee-Sae
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.227-232
    • /
    • 1998
  • The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the production of $O_2^-$ from oxygen using NADPH as an electron donor. Dormant in resting neutrophils, the enzyme acquires catalytic activity when the cells are exposed to appropriate stimuli. During activation, the cytosolic oxidase components $p47^{phox}$ and $p67^{phox}$ migrate to the plasma membrane, where they associate with cytochrome $b_{558}$, a membrane-bound flavohemoprotein, to assemble the active oxidase. The oxidase can be activated in a cell-free system; the activating agent usually employed is an anionic amphiphile such as sodium dodecyl sulfate (SDS). Because $p47^{phox}$ can translocate by itself during activation, the conformational change in $p47^{phox}$ may be responsible for the activation of NADPH oxidase. We show here that the treatment of $p47^{phox}$ with SDS leads to an increase in the reactivity of the sutbydryl group of cysteines toward N-ethylmaleimide, indicating that the conformational change occurs when $p47^{phox}$ is exposed to SDS. We propose that this change in conformation results in the appearance of a binding site through which $p47^{phox}$ interacts with cytochrome $b_{558}$during the activation process.

  • PDF