• Title/Summary/Keyword: N-doped ZnO thin film

Search Result 63, Processing Time 0.034 seconds

Synthesis of p-Type ZnO Thin Film Prepared by As Diffusion Method and Fabrication of ZnO p-n Homojunction

  • Kim, Deok Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.372-375
    • /
    • 2017
  • ZnO thin films were deposited by RF magnetron sputtering and then diffused by using an As source in the ampouletube. Also, the ZnO p-n homojunction was made by using As-doped ZnO thin films, and its properties were analyzed. After the As doping, the surface roughness increased, the crystal quality deteriorated, and the full width at half maximum was increased. The As-doped ZnO thin films showed typical p-type properties, and their resistivity was as low as $2.19{\times}10^{-3}{\Omega}cm$, probably because of the in-diffusion from an external As source and out-diffusion from the GaAs substrate. Also, the ZnO p-n junction displayed the typical rectification properties of a p-n junction. Therefore, the As diffusion method is effective for obtaining ZnO films with p-type properties.

Characterization of arsenic doped p-type ZnO thin film (As 토핑된 p형 ZnO 박막의 특성 분석)

  • Kim, Dong-Lim;Kim, Gun-Hee;Chang, Hyun-Woo;Ahn, Byung-Du;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.53-54
    • /
    • 2006
  • Arsenic doped p-type ZnO thin films have been realized on intrinsic (100) GaAs substrate by RF magnetron sputtering and thermal annealing treatment. p-Type ZnO exhibits the hole concentration of $9.684{\times}10^{19}cm^3$, resistivity of $2.54{\times}10^{-3}{\Omega}cm$, and mobility of $25.37\;cm^2/Vs$. Photoluminescence (PL) spectra of As doped p-type ZnO thin films reveal neutral acceptor bound exciton ($A^{0}X$) of 3.3437 eV and a transition between free electrons and acceptor levels (FA) of 3.2924 eV. Calculated acceptor binding energy ($E_A$) is about 0.1455 eV. Thermal activation and doping mechanism of this film have been suggested by using X-ray photoelectron spectroscopy (XPS). p-Type formation mechanism of As doped ZnO thin film is more related to the complex model, namely, $As_{Zn}-2V_{Zn}$, in which the As substitutes on the Zn site, rather than simple model, Aso, in which the As substitutes on the O site. ZnO-based p-n junction was fabricated by the deposition of an undoped n-type ZnO layer on an As doped p-type ZnO layer.

  • PDF

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

Realization and Analysis of p-Type ZnO:Al Thin Film by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.67-72
    • /
    • 2008
  • Al-doped p-type ZnO thin films were fabricated by RF magnetron sputtering on n-Si (100) and homo-buffer layers in pure oxygen ambient. ZnO ceramic mixed with 2 wt% $Al_2O_3$ was selected as a sputtering target. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are arranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-2}$, mobilities from 0.194 to $198\;cm^2V{-1}s^{-1}$ and resistivities from 0.0963 to $18.4\;{\Omega}cm$. FESEM cross section images of different parts of a p-type ZnO:Al thin film annealed at $800^{\circ}C$ show a compact structure. Measurement for same sample shows that density is $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. Photoluminescence (PL) spectra at 10 K show a shoulder peak of p-type ZnO film at about 3.117 eV which is ascribed to electron transition from donor level to acceptor level (DAP).

Fabrication and characterization of n-IZO / p-Si and p-ZnO:(In, N) / n-Si thin film hetero-junctions by dc magnetron sputtering

  • Dao, Anh Tuan;Phan, Thi Kieu Loan;Nguyen, Van Hieu;Le, Vu Tuan Hung
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 2013
  • Using a ceramic target ZnO:In with In doping concentration of 2%, hetero-junctions of n-ZnO:In/p-Si and p-ZnO:(In, N)/n-Si were fabricated by depositing Indium doped n - type ZnO (ZnO:In or IZO) and Indium-nitrogen co-doped p - type ZnO (ZnO:(In, N)) films on wafers of p-Si (100) and n-Si (100) by DC magnetron sputtering, respectively. These films with the best electrical and optical properties were then obtained. The micro-structural, optical and electrical properties of the n-type and p-type semiconductor thinfilms were characterized by X-ray diffraction (XRD), RBS, UV-vis; four-point probe resistance and room-temperature Hall effect measurements, respectively. Typical rectifying behaviors of p-n junction were observed by the current-voltage (I-V) measurement. It shows fairly good rectifying behavior with the fact that the ideality factor and the saturation current of diode are n=11.5, Is=1.5108.10-7 (A) for n-ZnO:In/p-Si hetero-jucntion; n=10.14, Is=3.2689.10-5 (A) for p-ZnO:(In, N)/n-Si, respectively. These results demonstrated the formation of a diode between n-type thin film and p-Si, as well as between p-type thin film and n-Si..

p-n Heterojunction Composed of n-ZnO/p-Zn-doped InP

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Pang, Seong-Sik;Lee, Sang-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.1-3
    • /
    • 2002
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed typical I-V characteristics. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

Defect Analysis via Photoluminescence of p-type ZnO:N Thin Film fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;So, Soon-Jin;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.202-206
    • /
    • 2007
  • ZnO is a promising material to make high efficient ultraviolet(UV) or blue light emitting diodes(LEDs) because of its large binding energy and energy bandgap. In this study, we prepared ZnO thin films with p-type conductivity on silicon(100) substrates by RF magnetron sputtering in the mixture of $N_2$ and $O_2$. The process was accompanied by low pressure in-situ annealing in $O_2$ at $600^{\circ}C$ and $800^{\circ}C$ respectively. Hall effect in Van der Pauw configuration showed that the N-doped ZnO film annealed at $800^{\circ}C$ has p-type conductivity. Photoluminescence(PL) spectrum of the film annealed at $800^{\circ}C$ showed UV emission related to exciton and bound to donor-acceptor pair(DAP) as well as visible emission related to many intrinsic defects.

Self-textured Al-doped ZnO transparent conducting oxide for p-i-n a-Si:H thin film solar cell

  • Kim, Do-Yeong;Lee, Jun-Sin;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.50.1-50.1
    • /
    • 2009
  • Transparent conductive oxides (TCOs) play an important role in thin-film solar cells in terms of low cost and performance improvement. Al-doped ZnO (AZO) is a very promising material for thin-film solar cellfabrication because of the wide availability of its constituent raw materials and its low cost. In this study, AZO films were prepared by low pressurechemical vapor deposition (LPCVD) using trimethylaluminum (TMA), diethylzinc(DEZ), and water vapor. In order to improve the absorbance of light, atypical surface texturing method is wet etching of front electrode using chemical solution. Alternatively, LPCVD can create a rough surface during deposition. This "self-texturing" is a very useful technique, which can eliminate additional chemical texturing process. The introduction of a TMA doping source has a strong influence on resistivity and the diffusion of light in a wide wavelength range.The haze factor of AZO up to a value of 43 % at 600 nm was achieved without an additional surface texturing process by simple TMA doping. The use of AZO TCO resulted in energy conversion efficiencies of 7.7 % when it was applied to thep-i-n a-Si:H thin film solar cell, which was comparable to commercially available fluorine doped tin oxide ($SnO_2$:F).

  • PDF

The Electrical and Microstructural Properties of ZnO:N Thin Films Grown in The Mixture of $N_2$ and $O_2$ by RF Magnetron Sputtering

  • Jin, Hu-Jie;Lee, Eun-Cheal;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.144-145
    • /
    • 2006
  • ZnO is a promising material to make high efficiency violet or blue light emitting diodes (LEDs) for its large binding energy (60meV) and big bandgap. But the high quality p-type conduction of ZnO is a dilemma to achieve LEDs with it. In present study, we presented a reliable method to prepare ZnO thin films on (100)silicon substrates by RF magnetron sputtering in the mixture ambient of $N_2$ and $O_2$, accompanying with low pressure annealing in the sputtering chamber in $O_2$ at $600^{\circ}C$ and $800^{\circ}C$ respectively. X-ray diffraction and Hail effect with Van der Paul method were performed to test ZnO films. Seeback effect was also carried out to identify carrier types in ZnO films and showed the N-doped ZnO film annealed at $800^{\circ}C$ had achieved p-type conduction.

  • PDF