• Title/Summary/Keyword: N-compounds

Search Result 2,649, Processing Time 0.041 seconds

Intercalation of Primary Diamines in the Layered Perovskite Oxides, $HSr_2Nb_3o_{10}$

  • 홍영식;김시중
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.8
    • /
    • pp.730-735
    • /
    • 1996
  • The layered perovskite oxide, KSr2Nb3O10, was synthesized. The interlayer potassium cations were readily exchanged by protons in hydrochloric acid solution to give the protonation compound, HSr2Nb3O10·0.5H2O. The intercalation compounds, [NH3(CH2)nNH3]xSr2Nb3O10, were also obtained by acid-base reactions between the protonation compound and organic bases, 1,n-alkyldiamines. The interlayer distances in the intercalation compounds were linearly increased with the increase of the number of carbon (Δc/Δn=1.05 Å) in 1,n-alkyldiamines. The intercalated alkyldiammonium ions formed a paraffin-like monolayer with average tilting angle (θ) of ca. 56°. The intercalation reactions occurred stoichiometrically. The thermal decomposition process of the intercalation compounds showed distinct three steps due to the desorption of hydrated water, the decomposition of organic moiety, and the decomposition of Sr-related compounds.

Isolation and Identification of Bioactive Compounds from the Tuber of Brassica oleracea var. gongylodes

  • Prajapati, Ritu;Seong, Su Hui;Kim, Hyeung Rak;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.214-220
    • /
    • 2020
  • Brassica oleracea var. gongylodes (red kohlrabi) is a biennial herbaceous vegetable whose edible bulbotuber-like stem and leaves are consumed globally. Sliced red kohlrabi tubers were extracted using methanol and the concentrated extract was partitioned successively with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (n-BuOH) and water (H2O). Repeated column chromatography of EtOAc fraction through silica, sephadex LH-20 and RP-18 gel led to isolation of eleven compounds of which compound 1 was a new glycosylated indole alkaloid derivative, 1-methoxyindole 3-carboxylic acid 6-O-β-D-glucopyranoside. Others were known compounds namely, β-sitosterol glucoside (4), 5-hydroxymethyl-2-furaldehyde (5), methyl-1-thio-β-D-glucopyranosyl disulfide (6), 5-hydroxy-2-pyridinemethanol (7), (3S,4R)-2-deoxyribonolactone (8), n-butyl-β-D-fructopyranoside (9), uridine (10) and three fructose derivatives, D-tagatose (11), β-D-fructofuranose (12) and β-D-fructopyranose (13). Similarly, isolation from CH2Cl2 fraction gave two known indole alkaloids, indole 3-acetonitrile (2) and N-methoxyindole 3-acetonitrile (3). The structure elucidation and identification of these compounds were conducted with the help of 13C and 1H NMR, HMBC, HMQC, EIMS, HR-ESIMS and IR spectroscopic data, and TLC plate spots visualization. Compounds 2, 3, 4, 5, 6, 7, 8 and 9 are noted to occur in kohlrabi for the first time. Different bioactivities of these isolated compounds have been reported in literature.

Effect of Extraction Condition on Free Amino acid Composition of Naturally Grown and Cutured Prawn Meat Extracts (보리새우육 엑스분의 추출조건과 그 유리아미노산 조성)

  • An, Mi-Jeong;Han, Young-Sil;Pyeun, Jae-Hyung
    • Korean journal of food and cookery science
    • /
    • v.6 no.1
    • /
    • pp.33-40
    • /
    • 1990
  • As a series of investigation on the ex-N compounds, the amino acid composition of the naturally grown and cultured prawn meat extracts was analyzed according to the following extraction conditions: 70% ethyl alcohol extraction, alcohol treatment of the same concentration after hot water extraction for 30 min, and 5% TCA treatment. The Protein content and the level of pure protein was 22 .8% and 18.4% in naturally grown prawn muscle, and 21.8% and 15.3% in the cultured prawn muscle, respectively. None protein nitrogenous compounds of the extracts were 4.4% in the naturally grown prawn muscle and 6.5% in the cultured prawn muscle, respectively. According to the different extract condition, ex-N compounds and the amino acid composition and related compounds and the amino acid composition and related compounds showed high level from 5% trichloroacetic acid extraction. The content of ex-N compounds of the cultured prawn muscle was 1033.0mg%. whereas the content of amino acids and related compounds-N was 825.3mg%, nearly reached to 80% to the total extractive nitrogen. A common feature of the free amino acid composition in the extracts of the muscles of the naturally grown and cultured prawn was high contents of glycine, proline, taurine, alanine and hydroxyproline.

  • PDF

Antitumor and Antiinflammatory Constituents from Celtis sinensis

  • Kim Dae Keun;Lim Jong Pil;Kim Jin Wook;Park Hee Wook;Eun Jae Soon
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.39-43
    • /
    • 2005
  • Eight compounds were isolated from the methanolic extract of the twigs of Celtis sinensis through repeated silica gel and Sephadex LH-20 column chromatography. Their chemical structures were elucidated as two triterpenoids, germanicol and epifriedelanol, two amide compounds, trans-N-caffeoyltyramine and cis-N-coumaroyltyramine, two lignan glycoside, pinoresinol glycoside and pinoresinol rutinoside, and two steroids by spectroscopic analysis.

Synthesis of N-Substituted 5-Hydroxyanthranilic Acid (N-치환 5-Hydroxyanthranilic acid의 합성)

  • 문정술;이강노;임중기;우원식;박상우
    • YAKHAK HOEJI
    • /
    • v.37 no.3
    • /
    • pp.243-246
    • /
    • 1993
  • Six N-substituted-5-hydroxyanthranilic acids were synthesized by the coupling reaction of 5-tosyloxyanthranilic acid ethyl ester with corresponding acid chlorides. The structure of the obtained compounds was proved by NMR and IR. These compounds did not inhibit the growth of micro-organisms while suppressed HSV-1 replication in vero cell at 100 $\mu\textrm{g}$/ml.

  • PDF

The Degradation of hydrocarbons in Petal of Azalea by Gokja (진달래꽃 탄화수소류의 곡자에 의한 분해)

  • 홍태희
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.4
    • /
    • pp.415-420
    • /
    • 1999
  • Petal of Azalea(Rhododendron mucronulatum Turcz) was incubated with Gokja at 3$0^{\circ}C$ for seven days and the essential oil components of petal of Azalea before and after incubated were analyzed using a GC/MSD. Ten or more essential oil components including n-heneicosane n-tricosane n-tetreacosane n-pentacosane n-heptacosane n-nonacosane and n-hentriacontane were identified from the petal of Azal-ea before incubated while oxygen-containng compounds including (E)-heptenal 2-ethoxy-1 -hexanol n-hexadecanoic acid methyl ester 9, 12-octadecadienoic acid methyl ester 9,12,15-octadecatrienoic acid methyl ester, n-octadecanoic acid methyl ester n-eicosanoic acid methyl ester and 9-docosaenoic acid methyl ester as well as n-alkanes such as n-tricosane that n-pentacosane were identified from the petal of Azalea after incubated. These results suggest that n-alkanes in petal of Azalea might be degraded and some oxygen-containing compounds such as aldehyde, esters and /or acids might be produced when pet-al of Azalea is incubated with Gokja.

  • PDF

Molecular Docking and Kinetic Studies of the A226N Mutant of Deinococcus geothermalis Amylosucrase with Enhanced Transglucosylation Activity

  • Hong, Seungpyo;Siziya, Inonge Noni;Seo, Myung-Ji;Park, Cheon-Seok;Seo, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1436-1442
    • /
    • 2020
  • Amylosucrase (ASase, E.C. 2.4.1.4) is capable of efficient glucose transfer from sucrose, acting as the sole donor molecule, to various functional acceptor compounds, such as polyphenols and flavonoids. An ASase variant from Deinococcus geothermalis, in which the 226th alanine is replaced with asparagine (DgAS-A226N), shows increased polymerization activity due to changes in the flexibility of the loop near the active site. In this study, we further investigated how the mutation modulates the enzymatic activity of DgAS using molecular dynamics and docking simulations to evaluate interactions between the enzyme and phenolic compounds. The computational analysis revealed that the A226N mutation could induce and stabilize structural changes near the substrate-binding site to increase glucose transfer efficiency to phenolic compounds. Kinetic parameters of DgAS-A226N and WT DgAS were determined with sucrose and 4-methylumbelliferone (MU) as donor and acceptor molecules, respectively. The kcat/Km value of DgAS-A226N with MU (6.352 mM-1min-1) was significantly higher than that of DgAS (5.296 mM-1min-1). The enzymatic activity was tested with a small phenolic compound, hydroquinone, and there was a 1.4-fold increase in α-arbutin production. From the results of the study, it was concluded that DgAS-A226N has improved acceptor specificity toward small phenolic compounds by way of stabilizing the active conformation of these compounds.

Isolation and Identification of Phenol Compounds from Acer tegmentosum and their Anti-inflammatory Activity (산겨릅나무로부터 페놀화합물의 분리 및 항염증 활성의 측정)

  • Song, Na-Young;Lee, Kwang Jin;Ma, Jin Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • The Acer tegmentosum (3 kg) were extracted with boiled water and the freeze dried extract powder was partitioned with $CH_2Cl_2$, EtOAc, n-BuOH and $H_2O$, successively. From the EtOAc and n-BuOH fraction, six phenolic compounds were isolated through the silica gel, octadecyl silica gel and sephadex LH-20 column chromatography. On the basis of spectroscopic methods, such as $^1H$-NMR and $^{13}C$-NMR, and LC/MS, the chemical structures of the compounds as feniculin (1), avicularin (2), (+)-catechin (3), (-)-epicatechin (4), salidroside (5) and 6'-O-galloylsalidroside (6). In this study, compounds 1 and 2 have been first isolated from the A. tegmentosum. To provide insight into the effects of six compounds isolated from A. tegmentosum on inflammation, we investigated its effect on nitric oxide (NO) production in RAW 264.7 cells using lipopolysaccharide (LPS) stimulation. Compounds 1 and 6 slightly repressed NO production. Also, compounds 3 and 4 inhibited NO secretion with statistical significance. However, compounds 2 and 5 did not show any inhibitory effect on NO production.

Behavior of Hazardous Organic Compounds in Low-Pressure Nanofiltration Process (저압 나노여과 공정에서의 유해성 유기물질의 거동)

  • Oh, Jeong-Ik;Lee, Seockheon;Lee, Bo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.165-173
    • /
    • 2004
  • Behavior of hazardous organic compounds including bisphenol A, phtalic acid, and phosphoric acid in low pressure nanofiltration process were investigated. In the case of NTR729HF, rejection of all target organic compounds except 2-H-Benzothiazol and 2-isopropyl phenol was more than 90%. The lowest rejection for 2-H-Benzothiazol was observed in another membranes. The UTC60 and UTC20 showed similar rejection characteristics of hazardous organic compounds. Although the rejection of Bisphenol A, n-buthyl benzenesulfoneamide, N-ethyl-p-toluensulfonamide, 2-H-benzothiazol, p-t-butylphenol and 2-isopropyl phenol was less than 30%, the rejection of tributyl phosphate, triethyl phosphate, camphor, 2,2,4 trimethyl 1,3 pentandiol and diphenyl amine was more than 90% in the case of UTC60 and UTC20. The rejection characteristics of various hazardous organic compounds were converted into one parameter Ks, which was proposed in the diffusion-convection model. The Ks of hazardous organic compounds were discussed by comparing with their solute size represented by Stokes radius. The diffusion convection model considering Ks was successful to interpret rejection characteristics of hazardous organic compounds by low-pressure nanofiltration membranes.

Analysis of Volatile Flavor Compounds in Raw Oyster and Oyster Cooking Drips by Gamma Irradiation Using Headspace Method (Headspace 법을 이용한 생굴 및 굴 자숙액의 감마선 조사에 의한 휘발성 냄새 성분 변화 분석)

  • Choi, Jong-Il;Kim, Hyun-Joo;Lee, Ju-Woon
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.177-181
    • /
    • 2011
  • This study was conducted to investigate the effects of gamma irradiation on the change of volatile flavor compounds of raw oyster and its cooking drips using headspace methods. Major volatile flavor compounds of the raw oyster were identified as methylthiomethane and 1,5-hexadiene. When the raw oyster was irradiated at the dose of 5 kGy, 1-pentane was newly detected. On the other hand, 9 compounds including N-methoxyformaldehyde were identified as the major volatile compounds of cooking drips from oyster. Among them, N-methoxyformaldehyde contents in cooking drip was decreased by the gamma irradiation. By the gamma irradiation above 30 kGy, new heterocyclic compounds was found in oyster cooking drips. Therefore, the amount of volatile flavor compounds in the raw oyster and cooking drips were changed by gamma irradiation, and these results could be potentially used in the seasoning industry.