Browse > Article

Antitumor and Antiinflammatory Constituents from Celtis sinensis  

Kim Dae Keun (College of Pharmacy, Woosuk University)
Lim Jong Pil (College of Pharmacy, Woosuk University)
Kim Jin Wook (College of Pharmacy, Woosuk University)
Park Hee Wook (College of Pharmacy, Woosuk University)
Eun Jae Soon (College of Pharmacy, Woosuk University)
Publication Information
Archives of Pharmacal Research / v.28, no.1, 2005 , pp. 39-43 More about this Journal
Abstract
Eight compounds were isolated from the methanolic extract of the twigs of Celtis sinensis through repeated silica gel and Sephadex LH-20 column chromatography. Their chemical structures were elucidated as two triterpenoids, germanicol and epifriedelanol, two amide compounds, trans-N-caffeoyltyramine and cis-N-coumaroyltyramine, two lignan glycoside, pinoresinol glycoside and pinoresinol rutinoside, and two steroids by spectroscopic analysis.
Keywords
Celtis sinensis; Germanicol; Epifriedelanol; Amide compounds; Pinoresinol glycoside; Pinoresinol rutinoside; Antitumor; Antiinflammatory;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 13  (Related Records In Web of Science)
Times Cited By SCOPUS : 12
연도 인용수 순위
1 Batirov, E., Kh., Matkarimov, A. D., Malikov, V. M., and Yagudaev, M. R., Versicoside-a novel lignan glycoside from Haplophyll versicolor. Khim. Prir. Soedin., 5, 624-628 (1985)
2 But, Paul P. H. Kimura, T. Guo, J. X., and Sung, C. K., International collation of traditional and folk medicine: Part 2. World scientific, Singapore, p. 22-23, (1997)
3 Tsukamoto, H, Hisada, S., and Nishibe, S., Lignans from bark of Fraxinus mandshurica var. japonica and F. japonica. Chem. Pharm. Bull., 32, 4482-4489 (1984)   DOI   ScienceOn
4 Park, H. J., Lee, M. S., Lee, E., Choi, M. Y., Cha, B. C., Jung, W. T., and Young, H. S., Serum cholesterol lowering effect of triterpene acetate obtained from Lactuca indica. Kor. J. Pharmacogn., 26, 40-46 (1995)
5 Kim, D. K. and Lee, K., Inhibitory effect of trans-N-p-coumaroyl tyramine from the twigs of Celtis sinensis on the acetylcholinesterase. Arch. Pharm. Res., 26, 735-738 (2003)   DOI   ScienceOn
6 Agrawal, P. K., Carbon-13 NMR spectrum of flavonoids, Elsevier, New York, p. 341, (1989)
7 Chiba, M., Okabe, K., Hisada, S., Shima, K., Takemoto, T., and Nishibe, S., Elucidation of the structure of a new lignan glucoside from Olea europaea by carbon-13 nuclear magnetic resonance spectroscopy. Chem. Pharm. Bull., 27, 2868-2873 (1979)   DOI
8 Hong, N. D., Rho, Y. S., Kim, N. J., and Kim, J. S., Studies on the constituents of Ulmi Cortex. Kor. J. Pharmacogn., 21 (3) 201-204 (1990)
9 Kundu, J. K., Rouf, A. S., Hossain, M. N., Hasan, C. M., and Rashid, M. A., Antitumor activity of epifriedelanol from Vitis trifolia. Fitoterapia, 71, 577-579 (2000)   DOI   ScienceOn
10 Lee, S. J., Yun, Y. S., Lee, I. K., Ryoo, I. J., Yun, B. S., and Yoo, I. D., An antioxidant lignan and other constituents from the root bark of Hibiscus syriacus. Planta Med., 65, 658-660 (1999)   DOI   ScienceOn
11 Koch, B. P., Harder, J., Lara, R. J., and Kattner, G., The effect of selective microbial degradation on the composition of mangrove derived pentacyclic triterpenols in surface sediments. Organic Geochem., 36, 273-285 (2005)   DOI   ScienceOn
12 Han, S. H., Lee, H. H., Lee, I. S., Moon Y. M., and Woo, E. R., A new phenolic amide from Lycium chinense Miller. Arch. Pharm. Res., 25, 433-437 (2002)   DOI   ScienceOn
13 Cho, J. Y., Kim, A. R., and Park, M. H., Lignans from the rhizomes of Coptis japonica differentially act as antiinflammatory principles. Planta Med., 67, 312-316 (2001)   DOI   ScienceOn
14 Perez, C., Almonacid, L. N., Trujillo, J. M., Gonzalez, A. G., Alonso, S. J., and Navarro, E., Lignans from Apollonias barbujana. Phytochemisty, 40, 1511-1513 (1995)   DOI   ScienceOn
15 Wu, T. S., Ou, L. F., and Teng, C. M., Aristolochic acids, aristolactam alkaloids and amides from Aristolochia kankauensis. Phytochemistry, 36, 1063-1068 (1994)   DOI   ScienceOn
16 Matsunaga, S., Tanaka, R., Takaoka, Y., In Y., Ishida, T., Mawardi, R., and Ismail, H. B. M., 26-Nor-D:A-friedooleanane triterpenes from Phyllanthus Watsonii. Phytochem., 32, 165- 170 (1993)   DOI   ScienceOn
17 Park, S. W., Yook, C. S., and Lee, H. K., Chemical components from the fruits of Crataegus pinnatifida var. psilosa. Kor. J. Pharmacogn., 25, 328-335 (1994)
18 Gonzalez, A. G., Mendoza, J. J., Ravelo, A. G., Luis J. G., and Dominguez, X. A., ${\delta}^{18}$ oleanane triterpene from Schaefferia cuneifolia. J. Nat. Prod., 52, 567-570 (1989)   DOI
19 Ahmad, V. U. and Rahman, A. U., Handbook of natural products data, vol. 2; Pentacyclic triterpenoids, Elsevier, New York, p. 566-567, (1994)
20 Do, J. C., Son, K. H., and Kang, S. S., Studies on the constituents of the roots of Rubus parvifolius (I). Isolation of (-)- epicatechin. Kor. J. Pharmacogn., 19, 170-173 (1988)
21 Lajide, L., Escoubas, P., and Mizutani, J., Termite antifeedant activity in Xylopia aethiopica. Phytochemistry, 40, 1105-1112 (1995)   DOI   ScienceOn