• Title/Summary/Keyword: N-Inversion energy

Search Result 30, Processing Time 0.021 seconds

Substituents Effect on Aziridine Chemistry: N-Inversion Energy, Reactivity and Regioselectivity of Nucleophilic Ring-opening

  • Park, Gyoo-Soon;Kim, Seok-Chan;Kang, Han-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1339-1343
    • /
    • 2005
  • The N-inversion energies and nucleophilic ring-opening reactions of N-substituted aziridine compounds are investigated using B3LYP/6-31+$G^*$ methods, where substituents (R) on the nitrogen atom has been H (1), Me (2), Ph (3), Bn (4), CHMePh (5), $CO_2Me$ (6), COPh (7) and $SO_2Ph$ (8). The N-inversion energy with X group are decreased as the following order: R = CHMePh (17.06 kcal/mol) $\gt$ Me (16.97) $\gt$ Bn (16.70) $\gt$ H (16.64) $\gt$ $SO_2Ph$ (12.18) $\gt$ Ph (8.91) $\gt$ COPh (5.75) $\gt$ $CO_2Me$ (5.48). For reactivity of the ring opening toward cyanide ion, the aziridine 6 (R=$CO_2Me$) is shown to be the most reactive one. During the ring opening of aziridine 6 by CN$^{\ominus}$, the torsional OCNC angle becomes near to $180^{\circ}$, where the geometry allows for the effective incorporation of electrons of the nitrogen atom to the C=O bond. It would be a possible driving force for nucleophilic ring opening reaction as well as decreasing the N-inversion energy barrier. Regarding to the regioselectivity, the orientation of nucleophile in ring opening reaction appears to be different in the case of 9 and 10. The results are discussed in terms of steric/electronic effect of the $C_2$-substituents.

Self-consistent Calculation of Electronic States in Implanted n-Type Silicon Inversion Layers (이온 주입시킨 n형 실리콘 반전층에 대한 전자상태의 Self-consistent계산)

  • 김충원;한백형
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.188-195
    • /
    • 1988
  • The electronic states in implanted n-type silicon inversion layers have been calculated by solving Schrodinger and Poisson's equations self-consistently. The results show that implantation affects seriously energy levels, populations, and electron distribution of n-type silicon inversion layers. The calcualted channel charge is in excellent agreement with the experimental data reported elsewhere. This analysis is expected to provide powerful means to evaluate the performance of implanted n-channel MOSTs.

  • PDF

Semiempirical MO Calculation of Hetero Atom Three-Membered Ring Compounds(II)${\cdot}$N-Nitroso-azirine and-diaziridine

  • Ki Woon Hwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.328-331
    • /
    • 1991
  • Fully optimized MNDO molecular orbital calculations are performed for N-nitroso-azirine (Ⅰ) and-diaziridine (Ⅱ). The ground state geometries show the nonplanar configuration around the imino nitrogen. The nitroso group rotational energy barriers and the ring inversion energy barriers are also discussed.

Comparative Analysis of PBTI Induced Device Degradation in Junctionless and Inversion Mode Multiple-Gate MOSFET (PBTI에 의한 무접합 및 반전모드 다중게이트 MOSFET의 소자 특성 저하 비교 분석)

  • Kim, Jin-Su;Hong, Jin-Woo;Kim, Hye-Mi;Lee, Jae-Ki;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.151-157
    • /
    • 2013
  • In this paper, a comparative analysis of PBTI induced device degradation in nanowire n-channel junctionless and inversion mode Multiple-Gate MOSFET(MuGFETs) has been performed. It has been observed that the threshold voltage is increased after PBTI stress and the threshold voltage variation of junctionless device is less significant than that of inversion mode device. However the degradation rate of junctionless device is less significant than that of inversion mode device. The activation energy of the device degradation is larger in inversion mode device than junctionless device. In order to analyze the more significant PBTI induced device degradation in inversion mode device than junctionless device, 3-dimensional device simulation has been performed. The electron concentration in inversion mode device is equal to the one in junctionless device but the electric field in inversion mode device is larger than junctionless device.

A Study on the Experimental Fabrication and Analysis of MOS Photovoltaic Solar Energy Conversion Device (MOS 광전변화소자의 식적에 관한 연구)

  • Ko, Gi-Man;Park, Sung-Hui;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.6
    • /
    • pp.203-211
    • /
    • 1984
  • MOS silicon solar cells have been developed using the fixed (interface) charge inherent to thermally oxidized silicon to induce an n-type inversion layer in 1-10 ohm-cm p-type silicon. Higher collection efficiencies are predicted than for diffused junction cells. Without special precautions a conversion efficiency of 14.2% is obtained. A MOS silicon solar cell is described in which an inversion layer forms the active area which is then contacted by means of a MOS grid. The highest efficiency is obtained when the resistivity of the substrate is high.

  • PDF

Effect of Toluene Added to Casting Solution on Characteristic of Phase Inversion Polysulfone Membrane (상전환 공정에 의한 폴리설폰막의 제조에 있어 제막용액에 첨가된 톨루엔의 영향)

  • Choi, Seung-Rag;Park, So-Jin;Seo, Bum-Kyoung;Lee, Kune Woo;Han, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.633-639
    • /
    • 2008
  • Polysulfone membranes were prepared via the phase inversion process. Toluene was added as a nonsolvent additive in the casting solution containing a mixture of polysulfone and n-methylpyrrolidone. When prepared via the diffusion-induced process using isopropanol as a precipitation nonsolvent, the solidified membranes revealed a similar asymmetric structure irrespective of the addition of toluene, presenting both a dense skin layer and a sponge-like support layer. The added toluene played a role of enhancing liquid-liquid phase separation of the casting solution, and skin layer thickness of a prepared membrane increased with toluene content in the casting solution. On membrane performance, the solute rejection showed a uniform behavior irrespective of the addition of toluene. However, in spite of the significant increase in dense skin layer thickness, the water permeation through the membrane prepared with 60 wt% toluene revealed five times as much flux, compared with that of the membrane prepared without toluene additive.

Semiempirical MO Calculation of Hetero Atom Three-Membered Ring Compounds (I) : N-Nitroso-aziridine, -oxaziridine, and -dioxaziridine

  • Hwang, Ki-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.422-426
    • /
    • 1990
  • Fully optimized MNDO molecular orbital calculations are described for N-nitroso-aziridine (I), -oxaziridine (II), and -dioxaziridine (III). The ground state geometries show the nonplanar configuration around the imino nitrogen. The nitroso group rotational energy barriers are 3.25, 0.43 and 1.18 kcal/mol for I, II and III, respectively. Also the calculated aziridine ring inversion barriers are 3.98, 15.61 and 27.46 kcal/mol for I, II and III, respectively.

Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles

  • Dizge, Nadir;Ozay, Yasin;Simsek, U. Bulut;Gulsen, H. Elif;Akarsu, Ceyhun;Turabik, Meral;Unyayar, Ali;Ocakoglu, Kasim
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.51-71
    • /
    • 2017
  • Antimicrobial polyethersulfone ultrafiltration membranes containing zerovalent iron ($Fe^0$) and magnetite ($Fe_3O_4$) nanoparticles were synthesized via phase inversion method using polyethersulfone (PES) as membrane material and nano-iron as nanoparticle materials. Zerovalent iron nanoparticles (nZVI) were prepared by the reduction of iron ions with borohydride applying an inert atmosphere by using $N_2$ gases. The magnetite nanoparticles (nMag) were prepared via co-precipitation method by adding a base to an aqueous mixture of $Fe^{3+}$ and $Fe^{2+}$ salts. The synthesized nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering analysis. Moreover, the properties of the synthesized membranes were characterized by scanning electron microscopy energy dispersive X-ray spectroscopy and atomic force microscopy. The PES membranes containing the nZVI or nMag were examined for antimicrobial characteristics. Moreover, amount of iron run away from the PES composite membranes during the dead-end filtration were tested. The results showed that the permeation flux of the composite membranes was higher than the pristine PES membrane. The membranes containing nano-iron showed good antibacterial activity against gram-negative bacteria (Escherichia coli). The composite membranes can be successfully used for the domestic wastewater filtration to reduce membrane biofouling.

Molecular Orbital Studies on the Reaction Path and Reactivity of $S_N2$ Reactions. Determination of Reactivity by MO Theory (Part 69) (SN2 반응의 반응경로 및 반응성에 관한 분자궤도함수 이론적 연구)

  • Lee, Ik Choon;Cho, Jeoung Ki;Lee, Hae Hwang;O, Hyeok Geun
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.239-247
    • /
    • 1990
  • The gas-phase S_N2$ reactions can be classified into neutral bimolecular, solvated, and ionic reactions; the neutral bimolecular reaction proceeds via retention mechanism whereas the ionic reaction produces inversion products. In the reaction of solvated nucleophile with one solvent molecule, a six-center transition state (TS) is formed and the two processes i.e., retention and inversion, are found to compete with a favored path depending on the electronic effect of the nucleophile and substituents in the substrate and on the steric requirement. In the ionic reaction, the difference in the energy barrier between the two processes reduces to a small value when the substrate methyl group is made bulky, leaving ability of the leaving group is improved and at the same time the negative charge of the nucleophile is dispersed. When the reaction center atom in the $S_N2$ reaction is changed to a larger sized second row elements, the activation barrier decreases since the steric crowding in the penta-coordinated TS is relieved. However within the same row, the barrier was found to increase as the atomic size decreased. For the boron, B, the barrier height was the least since in addition to the relatively large atomic size compared to C and N, it forms tetra-coordinated TS so that the steric crowding becomes nearly negligible.

  • PDF

Geometries and Energies of S$_N$2 Transition States$^\dag$

  • Lee, Ik-Choon;Kim, Chan-Kyung;Song, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.391-395
    • /
    • 1986
  • MNDO calculations were carried out to determine reactant complexes and transition states of the $S_N2$ reactions of $CH_3X\;+\;Y^-\;{\to}\;CH_3Y\;+\;X^-$ where X = F, Cl, CN and Y = CN, OH, F, Cl. The leaving group ability was found to vary inversely with the activation barrier, which in turn was mainly ascribable to the deformation energies accompanied with bond stretching of C-X bond and inversion of $CH_3$ group. The nucleophilicity was shown to be in the order $Cl^->F^->OH^->CN^-$ but the effect on the activation barrier was relatively small compared with that of the leaving group. The bond breaking and bond formation indices and energy decomposition analysis showed that the TS for the reaction of $CH_3$Cl occurs in the early stage of the reaction coordinate relative to that of $CH_3$F. It has been shown that the potential energy surface (PES) diagrams approach can only accommodate thermodynamic effects but fails to correlate intrinsic kinetic effects on the TS structure.