• Title/Summary/Keyword: N-Doped

Search Result 1,048, Processing Time 0.039 seconds

Threshold Voltage Control through Layer Doping of Double Gate MOSFETs

  • Joseph, Saji;George, James T.;Mathew, Vincent
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.240-250
    • /
    • 2010
  • Double Gate MOSFETs (DG MOSFETs) with doping in one or two thin layers of an otherwise intrinsic channel are simulated to obtain the transport characteristics, threshold voltage and leakage current. Two different device structures- one with doping on two layers near the top and bottom oxide layers and another with doping on a single layer at the centre- are simulated and the variation of device parameters with a change in doping concentration and doping layer thickness is studied. It is observed that an n-doped layer in the channel reduces the threshold voltage and increases the drive current, when compared with a device of undoped channel. The reduction in the threshold voltage and increase in the drain current are found to increase with the thickness and the level of doping of the layer. The leakage current is larger than that of an undoped channel, but less than that of a uniformly doped channel. For a channel with p-doped layer, the threshold voltage increases with the level of doping and the thickness of the layer, accompanied with a reduction in drain current. The devices with doped middle layers and doped gate layers show almost identical behavior, apart from the slight difference in the drive current. The doping level and the thickness of the layers can be used as a tool to adjust the threshold voltage of the device indicating the possibility of easy fabrication of ICs having FETs of different threshold voltages, and the rest of the channel, being intrinsic having high mobility, serves to maintain high drive current in comparison with a fully doped channel.

Characteristics of Cu-Doped Ge8Sb2Te11 Thin Films for PRAM (PRAM용 Cu-도핑된 Ge8Sb2Te11 박막의 특성)

  • Kim, Yeong-Mi;Kong, Heon;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.376-381
    • /
    • 2019
  • In this work, we evaluated the structural, electrical and optical properties of $Ge_8Sb_2Te_{11}$ and Cu-doped $Ge_8Sb_2Te_{11}$ thin films prepared by rf-magnetron reactive sputtering. The 200-nm-thick deposited films were annealed in a range of $100{\sim}400^{\circ}C$ using a furnace in an $N_2$ atmosphere. The amorphous-to-crystalline phase changes of the thin films were investigated by X-ray diffraction (XRD), UV-Vis-IR spectrophotometry, a 4-point probe, and a source meter. A one-step phase transformation from amorphous to face-centered-cubic (fcc) and an increase of the crystallization temperature ($T_c$) was observed in the Cu-doped film, which indicates an enhanced thermal stability in the amorphous state. The difference in the optical energy band gap ($E_{op}$) between the amorphous and crystalline phases was relatively large, approximately 0.38~0.41 eV, which is beneficial for reducing the noise in the memory devices. The sheet resistance($R_s$) of the amorphous phase in the Cu-doped film was about 1.5 orders larger than that in undoped film. A large $R_s$ in the amorphous phase will reduce the programming current in the memory device. An increase of threshold voltage ($V_{th}$) was seen in the Cu-doped film, which implied a high thermal efficiency. This suggests that the Cu-doped $Ge_8Sb_2Te_{11}$ thin film is a good candidate for PRAM.

Development of Visible Light Responsive Nitrogen Doped Photocatalysts ($TiO_2$, $Nb_2O_5$) for hydrogen Evolution (수소 생산을 위한 가시광선 감응 질소 도핑 $TiO_2$$Nb_2O_5$ 광촉매의 개발)

  • Choi, Mi-Jin;Chae, Kyu-Jung;Yu, Hye-Weon;Kim, Kyoung-Yeol;Jang, Am;Kim, In-S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.907-912
    • /
    • 2011
  • Development of visible light responsive photocatalysts is a promising research area to facilitate utilization of solar energy for hydrogen production via photocatalytic water splitting. In this study two groups of samples, nitrogen (N)-doped niobium pentoxide ($Nb_2O_5$) and titanium dioxide ($TiO_2$) ($Nb_2O_5-N$, $HNb_3O_8-N$, $TiO_2-N$) and N-undoped ones ($Nb_2O_5$ and $TiO_2$) were tested. In order to utilize visible light, nitrogen atoms were doped in selected photocatalysts by using urea. A shift of the absorption edges of the Ndoped samples in the visible light region was observed. Under visible light irradiation, N-doped samples were more prominent photocatalytic activities than the N-undoped samples. Specifically, 99.7% of rhodamine B (RhB) was degraded after 60 minutes of visible light irradiation with $TiO_2-N$. Since $TiO_2-N$ shows the highest activity of RhB degradation, it was supposed to generate the highest current response. However, $HNb_3O_8-N$ showed the highest current response ($63.7mA/cm^2$) than $TiO_2-N$. More interestingly, when we compare the hydrogen production, $Nb_2O_5-N$ produced $19.4{\mu}mol/h$ of hydrogen.

Effects of $Nb_2O_5$, and Oxygen Potential on Sintering Behavior of $UO_2$ Fuel Pellets

  • Song, Kun-Woo;Kim, Keon-Sik;Kang, Ki-Won;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 1999
  • The effects of N $b_2$ $O_{5}$ and oxygen potential on the densification and grain growth of U $O_2$ fuel have been investigated.0.3 wt% N $b_2$ $O_{5}$ -doped U $O_2$fuel pellets were sintered at 1$700^{\circ}C$ for 4 hours in sintering atmospheres which have various ratios of $H_2O$ to $H_2$ gas. Compared with those of undoped U $O_2$ pellets, the sintered density and grain size of the 0.3 wt% N $b_2$ $O_{5}$ -doped U $O_2$ pellet increase under the $H_2O$/ $H_2$ gas ratio of 5.0$\times$10$^{-3}$ to 1.0$\times$10$^{-2}$ and under the $H_2O$/ $H_2$gas ratio of 5.0$\times$10$^{-3}$ to $1.5\times$10$^{-2}$ , respectively. The sintering of U $O_2$fuel pellets containing 0.1 wt% to 0.5 wt% N $b_2$ $O_{5}$ was carried out at 168$0^{\circ}C$ for 4 hours. The enhancing effect of N $b_2$ $O_{5}$ on the sintered density and grain size becomes larger as the N $b_2$ $O_{5}$ content increases. The solubility limit of N $b_2$ $O_{5}$ in U $O_{2}$ seems to be between 0.3 wt% and 0.5 wt%, and beyond the solubility limit the second phase whose composition corresponds near to N $b_2$U $O_{6}$ is precipitated on grain boundary. The enhancement of densification and grain growth in U $O_2$ is attributed to the increased concentration of a uranium vacancy which is formed by the interstitial N $b^{4+}$ ion in the U $O_2$ lattice.

  • PDF

Study on Thermoelectric Properties of Cu Doping of Pulse-Electrodeposited n-type Bi2(Te-Se)3 Thin Films (펄스 전기도금법에 의해 제조된 n형 Bi2(Te-Se)3 박막의 Cu 도핑에 따른 열전특성에 관한 연구)

  • Heo, Na-Ri;Kim, Kwang-Ho;Lim, Jae-Hong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Recently, $Bi_2Te_3$-based alloys are the best thermoelectric materials near to room temperature, so it has been researched to achieve increased figure of merit(ZT). Ternary compounds such as Bi-Te-Se and Bi-Sb-Te have higher thermoelectric property than binary compound Bi-Te and Sb-Te, respectively. Compared to DC plating method, pulsed electrodeposition is able to control parameters including average current density, and on/off pulse time etc. Thereby the morphology and properties of the films can be improved. In this study, we electrodeposited n-type ternary Cu-doped $Bi_2(Te-Se)_3$ thin film by modified pulse technique at room temperature. To further enhance thermoelectric properties of $Bi_2(Te-Se)_3$ thin film, we optimized Cu doping concentration in $Bi_2(Te-Se)_3$ thin film and correlated it to electrical and thermoelectric properties. Thus, the crystal, electrical, and thermoelectric properties of electrodeposited $Bi_2(Te-Se)_3$ thin film were characterized the XRD, SEM, EDS, Seebeck measurement, and Hall effect measurement, respectively. As a result, the thermoelectric properties of Cu-doped $Bi_2(Te-Se)_3$ thin films were observed that the Seebeck coefficient is $-101.2{\mu}V/K$ and the power factor is $1412.6{\mu}W/mK^2$ at 10 mg of Cu weight. The power factor of Cu-doped $Bi_2(Te-Se)_3$ thin film is 1.4 times higher than undoped $Bi_2(Te-Se)_3$ thin film.