• Title/Summary/Keyword: N-Doped

Search Result 1,041, Processing Time 0.033 seconds

Photoluminescence properties of N-doped and nominally undoped p-type ZnO thin films

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.65-66
    • /
    • 2008
  • The realization and origin of p-type ZnO are main issue for photoelectronic devices based on ZnO material. N-doped and nominally undoped p-type ZnO films were achieved on silicon (100) and homo-buffer layers by RF magnetron sputtering and post in-situ annealing. The undoped film shows high hole mobility of 1201 $cm^2V^{-1}s^{-1}$ and low resistivity of $0.0454\Omega{\cdot}cm$ with hole concentration of $1.145\times10^{17}cm^{-3}$. The photoluminescence(PL) spectra show the emissions related to FE, DAP and defects of $V_{Zn}$, $V_O$, $Zn_O$, $O_i$ and $O_{Zn}$.

  • PDF

Highly donor-doped $Ba_{1-x}$$La_x$Ti$O_3$ ceramics

  • Korobova N.;Wha, Soh-Dea
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.374-377
    • /
    • 2003
  • Sol-gel processing of BaTiO$_3$ ceramics doped with La(0.01-1.00 at.%) were prepared from metal barium, titanium n-butoxide and lanthanum isopropoxide. Characterization of the sol-gel-derived powder using XRD, SEM is also reported. The obtained results suggested that insulator to semiconductor transition for highly donor-doped barium titanate was closely related to the incorporation of donor into the grains and to the resultant grain size, which were significantly affected by the sinterability of BaTiO$_3$ powders and sintering conditions used.

  • PDF

Distinct Mechanisms of DNA Sensing Based on N-Doped Carbon Nanotubes with Enhanced Conductance and Chemical Selectivity

  • Kim, Han Seul;Lee, Seung Jin;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.415.1-415.1
    • /
    • 2014
  • Carrying out first-principles calculations, we study N-doped capped carbon nanotube (CNT) electrodes applied to DNA sequencing. While we obtain for the face-on nucleobase junction configurations a conventional conductance ordering where the largest signal results from guanine according to its high highest occupied molecular orbital (HOMO) level, we extract for the edge-on counterparts a distinct conductance ordering where the low-HOMO thymine provides the largest signal. The edge-on mode is shown to operate based on a novel molecular sensing mechanism that reflects the chemical connectivity between N-doped CNT caps that can act both as electron donors and electron acceptors and DNA functional groups that include the hyperconjugated thymine methyl group[1].

  • PDF

Sol-Gel Derived Nitrogen-Doped TiO2 Photoanodes for Highly Efficient Dye-Sensitized Solar Cells

  • Kim, Sang Gyun;Ju, Myung Jong;Choi, In Taek;Choi, Won Seok;Kim, Hwan Kyu
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • N-doped anatase $TiO_2$ nanoparticles were prepared by the sol-gel process followed by a hydrothermal treatment and successfully used as the photoanodes in organic dye-sensitized solar cells (DSSCs). As expected, the power conversion efficiency (PCE) of 8.44% was obtained for the NKX2677/HC-A-sensitized DSSC based on the 30 mol% N-doped $TiO_2$ photoanode, which was an improvement of 23% relative to that of the DSSC based on the NKX2677/DCA.

Highly Donor-doped $Ba_{1-x}La_{x}TiO_{3}$ Semiconductive Ceramics

  • Soh, Dea-Wha;Korobova N.
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.31-34
    • /
    • 2003
  • Sol-gel processing of $BaTiO_{3}$ ceramics doped with La (0.01∼1.00 at.%) were prepared from metal barium, titanium n-butoxide and lanthanum isopropoxide. Characterization of the sol-gel-derived powder using XRD, SEM is also reported. The obtained results suggested that insulator to semiconductor transition for highly donor-doped barium titanate was closely related to the incorporation of donor into the grains and to the resultant grain size, which were significantly affected by the sinterability of $BaTiO_{3}$ powders and sintering conditions used.

A Study on the I-V characteristics of a delta doped short-channel HEMT (단채널 덱타도핑 HEMT의 전압-전류 특성에 대한 2차원적 해석)

  • 이정호;채규수;김민년
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.354-358
    • /
    • 2004
  • In this thesis, an analytical model for Ⅰ-Ⅴ characteristics of an n-AlGaAs/GaAs Delta doped HEMT is proposed. 2-dimensional electron gas density, and conduction band edge profile are calculated from a self-consistent iterative solution of the Poisson equation. Parameters, e.g., the saturation velocity, 2-dimensional electron gas concentration, thickness of the doped and undoped layer(AlGaAs, GaAs, spacer etc.,) are in good agreement with the independent calculations.

  • PDF

Effect of anodic potentials for fabricating co-doped TiO2 on the photocatalytic activity

  • Lee, Seunghyun;Han, Jae Ho;Oh, Han-Jun;Chi, Choong-Soo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.295-295
    • /
    • 2012
  • The $TiO_2$ films were prepared in the $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages, to compare the photocatalytic performances of titania for purification of waste water. The microstructure was characterized by a Field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). Chemical bonding states and co-doped elements of F and N were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. From the result of diffuse reflectance absorption spectroscopy(DRS), it is indicated that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward visible light area, and the photocatalytic reaction of $TiO_2$ was improved by doping an appropriate contents of F and N.

  • PDF

Effect of Al Doping Concentration on Resistance Switching Behavior of Sputtered Al-doped MgOx Films

  • Lee, Gyu-Min;Kim, Jong-Gi;Park, Seong-Hun;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.307-307
    • /
    • 2012
  • In this study, we investigated that the resistance switching characteristics of Al-doped MgOx films with increasing Al doping concentration and increasing film thickness. The Al-doped MgOx based ReRAM devices with a TiN/Al-doped MgOx/Pt/Ti/SiO2 were fabricated on Si substrates. The 5 nm, 10 nm, and 15 nm thick Al-doped MgOx films were deposited by reactive dc magnetron co-sputtering at $300^{\circ}C$ and oxygen partial ratio of 60% (Ar: 16 sccm, O2: 24 sccm). Micro-structure of Al-doped MgOx films and atomic concentration were investigated by XRD and XPS, respectively. The Al-doped MgOx films showed set/reset resistance switching behavior at various Al doping concentrations. The process voltage of forming/set is decreased and whereas the initial current level is increased with decreasing thickness of Al-doped MgOx films. Besides, the initial current of Al-doped MgOx films is increased with increasing Al doping concentration in MgOx films. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of non-lattice oxygen of Al-doped MgOx.

  • PDF

Effect of Non-lattice Oxygen Concentration and Micro-structure on Resistance Switching Characteristics in Nb-doped HfO2 by DC Magnetron Co-Sputtering

  • Lee, Gyu-Min;Kim, Jong-Gi;Kim, Yeong-Jae;Kim, Jong-Il;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.378.1-378.1
    • /
    • 2014
  • In this study, we investigated that the resistance switching characteristics of Nb-doped HfO2 films with increasing Nb doping concentration. The Nb-doped HfO2 based ReRAM devices with a TiN/Nb-doped HfO2/Pt/Ti/SiO2 were fabricated on Si substrates. The Nb-doped HfO2 films were deposited by reactive dc magnetron co-sputtering at $300^{\circ}C$ and oxygen partial ratio of 60% (Ar: 16sccm, O2: 24sccm). Microstructure of Nb-doped HfO2 films and atomic concentration were investigated by XRD, TEM, and XPS, respectively. The Nb-doped HfO2 films showed set/reset resistance switching behavior at various Nb doping concentrations. The process voltage of forming/set is decreased and whereas the initial current level is increased in doped HfO2 films. However, the switching properties of Nb-doped HfO2 were changed above the specific doping concentration of Nb. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of non-lattice oxygen and micro-structure of Nb-doped HfO2.

  • PDF

Metal Nano Particle modified Nitrogen Doped Amorphous Hydrogenated Diamond-Like Carbon Film for Glucose Sensing

  • Zeng, Aiping;Jin, Chunyan;Cho, Sang-Jin;Seo, Hyun-Ook;Lim, Dong-Chan;Kim, Doo-Hwan;Hong, Byung-You;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.434-434
    • /
    • 2011
  • Electrochemical method have been employed in this work to modify the chemical vapour deposited nitrogen doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel and copper nano particle modified N-DLC electrodes. The electrochemical behaviour of the metal nano particle modified N-DLC electrodes have been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano particles on the N-DLC surface have been investigated using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The nickel nano particle modified N-DLC electrode exhibits a high catalytic activity and low background current, while the advantage of copper modified N-DLC electrode is drawn back by copper oxidizations at anodic potentials. The results show that metal nano particle modification of N-DLC surface could be a promising method for controlling the electrochemical properties of N-DLC electrodes.

  • PDF