Effect of anodic potentials for fabricating co-doped TiO₂ on the photocatalytic activity

Seunghyun Lee^a, Jae Ho Han^a, Han-Jun Oh^b, Choong-Soo Chi^{a*} ^{a*}Kookmin University(E-mail : cschi@kookmin.ac.kr), ^bHanseo University

Abstract : The TiO₂ films were prepared in the H_2SO_4 solution containing NH₄F at different anodic voltages, to compare the photocatalytic performances of titania for purification of waste water. The microstructure was characterized by a Field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). Chemical bonding states and co-doped elements of F and N were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped TiO₂ films was analyzed by the degradation of aniline blue solution. From the result of diffuse reflectance absorption spectroscopy(DRS), it is indicated that the absorption edge of the F-N-codoped TiO₂ films shifted toward visible light area, and the photocatalytic reaction of TiO₂ was improved by doping an appropriate contents of F and N.

1. Introduction

 TiO_2 is the most widely used photocatalyst for the decomposition of various organic pollutants for its high activity and chemical stability. However, the band gap energy only allows TiO_2 to absorb ultraviolet light, which accounts for a small part of solar energy. The purpose of this study is to prepare F-N-codoped TiO_2 with higher photocatalytic activity under visible irradiation, and to explain the relationship to fabrication parameters and a high specific surface area, and to compare the photocatalytic performance of visible light active F-N-codoped TiO_2 films fabricated in same electrolyte at different voltages, which was evaluated by analyzing the degradation of aniline blue.

2. Experimental and Results

The F-N-codoped TiO₂ on Ti substrate was prepared by using an electrochemical anodic oxidation process. Titanium sheets(99.5%) were cut into 30 mm \times 40 mm rectangular samples and degreased by ultrasonic in acetone, rinsed in distilled water and dried in air at room temperature. And then Ti sheets were chemical etched in HF, HNO₃,H₂SO₄ aqueous solution for 1 min at room temperature. The electrolyte was composed of 1.0M H₂SO₄ / 4wt% NH₄F and anodization voltage was applied at 30 V and 180 V. Annealing in air at 550°C for 1h was done to fabricate Anatase and Rutile TiO₂ layers for the sample anodized at 30 V. The observation and the analysis of the F-N-codoped TiO₂ were carried out using FE-SEM, XPS and XRD, and the diffused reflectance of the film was executed using UV-Vis spectrophotometer. The photocatalytic reaction was measured by the degradation rate of aniline blue.

3. Conclusions

In this work, morphology of TiO_2 films was different according to the anodic potentials. Nanotube was seen for the film anodized at 30 V. The TiO_2 films for 180 V exhibited a porous microstructure with submicron and nano sized spherical pores. From the investigation of chemical bonding states by XPS, F and N were observed in the TiO_2 films. Compared with films prepared at 30 V, the titania fabricated at 180 V shows more effective photocatalytic activity. And the co-doping of the F and N leads to much narrowing of the band gap compared to pure TiO_2 film, and it remarkably enhanced the photocatalytic reaction under visible irradiation.

References

- 1. Chung-Chin Yen, J. Solid State Chem., 184 (2011) 2053
- 2. Hsin-Hung Ou, J. Mol. Catal. A: Chem., 275 (2007) 200
- 3. Lan Sun, J. Hazard. Mater., 171 (2009) 1045
- 4. Ya-Fang Tu, Mater. Res. Bull., 45 (2010) 224