DOI QR코드

DOI QR Code

Sol-Gel Derived Nitrogen-Doped TiO2 Photoanodes for Highly Efficient Dye-Sensitized Solar Cells

  • Kim, Sang Gyun (Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University) ;
  • Ju, Myung Jong (Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University) ;
  • Choi, In Taek (Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University) ;
  • Choi, Won Seok (Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University) ;
  • Kim, Hwan Kyu (Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University)
  • 투고 : 2014.03.14
  • 심사 : 2014.03.24
  • 발행 : 2014.03.01

초록

N-doped anatase $TiO_2$ nanoparticles were prepared by the sol-gel process followed by a hydrothermal treatment and successfully used as the photoanodes in organic dye-sensitized solar cells (DSSCs). As expected, the power conversion efficiency (PCE) of 8.44% was obtained for the NKX2677/HC-A-sensitized DSSC based on the 30 mol% N-doped $TiO_2$ photoanode, which was an improvement of 23% relative to that of the DSSC based on the NKX2677/DCA.

키워드

참고문헌

  1. O'Regan B.; Gratzel M. Nature 1991, 353, 737-740. https://doi.org/10.1038/353737a0
  2. Gratzel, M. Nature 2001, 414, 338-344. https://doi.org/10.1038/35104607
  3. Wang, K.-P.; Teng, H. Phys. Chem. Chem. Phys. 2009, 11, 9489-9496. https://doi.org/10.1039/b912672d
  4. Liu, J.; Yang, H.; Tan, W.; Zhou, X.; Lin, Y. Electrochim. Acta 2010, 56, 396-400. https://doi.org/10.1016/j.electacta.2010.08.063
  5. Kim, S. G.; Ju, M. J.; Choi, I. T.; Choi, W. S.; Choi, H.-J.; Baek, J.-B.; Kim, H. K. RSC Adv. 2013, 3, 16380-16386. https://doi.org/10.1039/c3ra42081g
  6. Tang, J.; Cowan, A. J.; Durrent, J. R.; Klug, D. R.; J. Phys. Chem. C 2011, 115, 3143-3150. https://doi.org/10.1021/jp1080093
  7. Tian, H.; Hu, L.; Li, W.; Sheng, J.; Xu, S.; Dai, S. J. Mater. Chem. 2011, 21, 7074-7077. https://doi.org/10.1039/c1jm10853k
  8. Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M. J. Phys. Chem. C 2007, 111, 10618-10623. https://doi.org/10.1021/jp0727493
  9. Song. B. J.; Song, H. M.; Choi, I. T.; Kim, S. K.; Kang D. S; Kang, M. S.; Lee, M. J.; Cho, D. W.; Ju, M. J.; Kim, H. K. Chem. Euro. J. 2011, 17, 11115-11121. https://doi.org/10.1002/chem.201100813
  10. Valentin, C. D.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Czoska, A. M.; Paganini, M. C.; Giamello, E. Chem. Mater. 2008, 20, 3706-3714. https://doi.org/10.1021/cm703636s
  11. Munoz, A. G.; Chen, Q.; Schmuki, P. J. Solid State Electrochem. 2007, 11, 1077-1084. https://doi.org/10.1007/s10008-006-0241-9
  12. Nagasubramanian, G.; Wheeler, B. L.; Fu-Ren, F. F.; Allen. J. B. J. ElectroChem. Soc. 2007, 129, 1742-1745.
  13. Green, M. A.; Solar Cells: Operating Principles, Technology, and System Applications, Prentice-Hall, Englewood Cliffs, NJ, 1982.
  14. Schlichthorl, G.; Park, N. G.; Frank, A. J. J. Phys. Chem. B 1999, 103, 782-791.
  15. Van de Lagemaat, J.; Park. N. G.; Frank. A. J. J. Phys. Chem. B 2000, 104, 2044-2052. https://doi.org/10.1021/jp993172v
  16. Bisquert, J.; Fabregat-Santiago, F.; Mora-Sero, I.; Garcia-Belmonte, G.; Gimenez, S. J. Phys. Chem. C 2009, 113, 17278-17290. https://doi.org/10.1021/jp9037649
  17. Nissfolk, J.; Fredin, K.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. B 2006, 110, 17715-17718. https://doi.org/10.1021/jp064046b
  18. ang, Q.; Zhang, Z.; Zakeeruddin, S. M.; Gratzel, M. J.Phys. Chem. C 2008, 112, 7084-7092. https://doi.org/10.1021/jp800426y
  19. Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213-4225 https://doi.org/10.1016/S0013-4686(02)00444-9