• 제목/요약/키워드: N uptake

검색결과 966건 처리시간 0.027초

헤아리베치 피복을 이용한 옥수수 무경재배에 관한 연구 I. 헤아리베치의 피복량별 토양 무기태 질소함량 , 옥수수의 수량 및 질소 흡수량의 변화 (Study on No-tillage Silage Corn Production with Legume Hairy Vetch ( Vicia villosa Roth ) Cover I. Changes of soil mineral nitrogen, yeild and nitrogen uptake of corn by quantity of hairy vetch cover)

  • 서종호;이호진
    • 한국초지조사료학회지
    • /
    • 제18권1호
    • /
    • pp.43-48
    • /
    • 1998
  • No-tillage silage corn with legume hairy vetch(Vicia villosa Roth, HV) has renewed interest in supply of mineral N, soil erosion control at sloping land and weed control by cover of HV killed. This study was conducted to monitor concentration of soil mineral N ($NO_3^-$ -N + $NH_4^+$-N) and to find out variation of growth, yield and N uptake of silage corn according to quantity of HV cover; HV-removed, 1X-HV, 2X-HV at field of Crop Experiment Station in 1996. HV groM in early spring decreased the mineral N of soil depth 7.5 -22cm before corn seeding. But, killed HV cover increased the concentration of soil mineral N at surface soil (0-7.5cm) up to 45.4mglkg at early growth stage of corn. Dry matter(Dh4) of corn at harvest was lower in W-removed than in Okg FNlha. But DM and N uptake of corn at harvest were increased by quantity of HV-cover increasing liom HV-removed to 2X-HV. Hairy vetch could substitute N fertilizer for silage corn by N mineralized h m HV killed, but reduced early growth and N uptake of corn before silk by reducing soil mineral N of plow layer.

  • PDF

Ammonium and Nitrate Uptake and Utilization Efficiency of Rice varieties as Affected by Different N-Concentrations

  • Choi Kyung-Jin;Swiader John M.
    • 한국작물학회지
    • /
    • 제50권1호
    • /
    • pp.22-27
    • /
    • 2005
  • To find out the optimum mixture ratio of ammonium and nitrate on rice plant, 4 rice varieties were examined during 14days after transplanting in hydroponics with the different ratio of ammonium to nitrate(100 : 0, 75: 25,50: 50, 25: 75 and 0: 100). The highest N uptake from solution and the maximum plant dry weight were $60\~70\%$ ammonium and $30\~40\%$ nitrate mixture treatment both in Japonica and Tongil type rice plants. And with the same varieties N-uptake and N use-efficiency were compared between 10.0 mM and 1.0 mM nitrogen using $70\%$ ammonium and $30\%$ nitrate for 24 days after transplanting. Rice plants absorbed more nitrogen$(131\~145\%)$ in 10.0mM than 1.0mM treatment but accumulated N in rice plants were almost the same in both treatment. Among the tested rice cultivars, dry matter production and total accumulative nitrogen in rice plants were much high in Tongil type than japonica type rice cultivars. N-recovery ratios of rice plants from uptake N were $90.8-99.0\%$ in low concentration N solution(1.0 mM), but $69.4-81.7\%$ were observed in high concentration N solution(10.0 mM). It means that suppling low concentration N steadily will be better to prevent loss of N without reducing of growth in rice plants.

수도(水稻)에서 수량(收量), 질소효율(窒素效率) 및 질소흡수량(窒素吸收量)의 상호관계(相互關係) (Relationship among Grain Yield, Nitrogen Efficiency and Nitrogen Uptake Amount in Rice Plant)

  • 박훈
    • 한국토양비료학회지
    • /
    • 제7권3호
    • /
    • pp.147-154
    • /
    • 1974
  • 질소(窒素)의 정조생산효율을 높이는 방법(方法)을 찾고자 정조수량(精租收量)(Y) 질소효율(E) 및 질소흡수량(窒素吸收量)(N)간(間)의 상호관계(相互關係)를 우리나라와 일본자료(日本資料)에 의(依)하여 찾아보았다. E와 N간(間)의 관계는 수개(數個) 계층(階層)으로 구분(區分)할 수 있었으며 각계층내(各階層內)에서 Y=EN=(b-aN)N 관계(關係)가 성립(成立)되었으며 여기서 b는 E의 이론적최대치(理論的最大値)였고 a는 이론적(理論的) 최대수량(最大收量)에서의 E/N치(値)였다. 수도고수량(水稻高收量) 연구(硏究)에 있어 현재(現在)의 기술(技術)은 효율 56.8에 이르렀으며 이때 질소흡수량(窒素吸收量)은 15.5kg이었다. 장래(將來)의 목표(目標)는 질소(窒素) 흡수량(吸收量) 17kg에서 효율 63에 이르는 것으로 나타났다. 일본독농가(日本篤農家)에서는 이 수준(水準)에 이미 도달(倒達)했을 가능성이 있다. 질소효율(窒素效率)의 증가(增加)없이는 고수량(高收量)을 달성(達成)할 수 있는 질소흡수(窒素吸收)가 증가(增加)되지 않는 것으로 보였다. 토양질소(土壤窒素)의 효율(效率)과 흡수량(吸收量)의 증대(增大)가 전체질소(全體窒素)의 효율증대에 필수요건(必須要件)으로 나타났다.

  • PDF

Regulatory Mechanisms of Angiotensin II on the $Na^+/H^+$ Antiport System in Rabbit Renal Proximal Tubule Cells. II. Inhibitory Effects of ANG II on $Na^+$ Uptake

  • Han, Ho-Jae;Park, Soo-Hyun;Koh, Hyun-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.425-434
    • /
    • 1997
  • Many reports represent that angiotensin II (ANG II) caused a dose dependent biphasic effects on fluid transport in the proximal tubule. However, respective roles of different signaling pathways in mediating these effects remain unsettled. The aim of the present study was to examine signaling pathways at high doses of ANG II on the $Na^+$ uptake of primary cultured rabbit renal proximal tubule cells(PTCs) in hormonally defined serum-free medium. High concentrations of ANG II $(>10^{-9}\;M)$ inhibited $Na^+$ uptake and increased $[Ca^{2+}]_i\;level$ in the PTCs. However, low concentrations of $(<10^{-11}\;ANG\;II)$ stimulated $Na^+$ uptake and did not affect $[Ca^{2+}]_i\;level$. 8-(N, N-diethylamino)-octyl-3,3,5- trimethoxybenzoate (TMB-8), ethylene glycol-bis$({/beta}-amino\;ethyl ether)-N,N,N'$, N'-tetra acetic acid (EGTA), and nifedifine partially blocked the inhibitory effects of ANG II on $Na^+$ uptake. When ANG II and bradykinin (BK) were treated together, $Na^+$ uptake was further reduced $(88.47{\pm}1.98%\;of\;that\;of\;ANG\;II,\;81.85{\pm}1.84%\;of\;that\;of\;BK)$. In addition, W-7 and KN-62 blocked the ANG II-induced inhibition of $Na^+$ uptake. Arachidonic acid reduced $Na^+$ uptake in a dose-dependent manner. When ANG II and arachidonic acid were treated together, inhibitory effects on $Na^+$ uptake significantly exhibited greater reduction than that of each group, respectively. When PTCs were treated by mepacrine $(10^{-6}\;M)$ and AACOCF3 $(10^{-5}\;M)$ for 1 hr before the addition of $(<10^{-9}\;ANG\;II)$, the inhibitory effect of ANG II was reversed. In addition, econazole $(>10^{-6}\;M)$ blocked ANG II-induced inhibition of $Na^+$ uptake. In conclusion, the $[Ca^{2+}]_i$ (calcium-calmodulin-dependent kinase) and phospholipase $A_2\;(PLA_2)$ metabolites are involved in the inhibitory effects of ANG II on $Na^+$ uptake in the PTCs.

  • PDF

Application of Differential Expression of Genetic Profiles in Brain Tumors with Variable [$^{18}F$]-fluorodeoxyglucose Uptake

  • Lee, Seung-Ho;Yun, Mi-Jin;Kim, Ki-Nam;Seo, Sang-Hui;Sohn, Sung-Hwa;Kim, Yu-Ri;Kim, Hye-Won;Kim, In-Kyoung;Shim, Boo-Im;Lee, Seung-Min;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.198-207
    • /
    • 2007
  • [ $^{18}F$ ]-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) scan has been found to reflect tumor aggressiveness and prognosis in various types of cancer. In this study, the gene expression profiles of glial tumors were evaluated to determine whether glial tumors with high $^{18}F$-FDG uptake have more aggressive biological potential than with low uptake. Surgical specimens were obtained from the 12 patients with glial tumors (4 males and 8 females, age range 42-68 years). The tumor samples were divided into two groups based on the $^{18}F$-FDG uptake PET scan findings: high $^{18}F$-FDG uptake (n=4) and low $^{18}F$-FDG uptake (n=8). The pathological tumor grade was closely correlated with the $^{18}F$-FDG uptake pattern: Glial tumors with high $^{18}F$-FDG uptake were pathologically Edmondson-Steiner grade III, while those with low uptake were grade II. The total RNA was extracted from the frozen tissues of all glial tumors (n=12), and adjacent non-cancerous tissue (n=3). The gene expression profiles were evaluated using cDNA microarray. The glial tumors with high $^{18}F$-FDG uptake showed increase expression of 15 genes compared to those with low uptake (P<0.005). Nine genes were down-regulated. Gene expression is closely related to cell survival, cell-to-cell adhesion or cell spreading; therefore, glial tumors with high $^{18}F$-FDG uptake appear to have more aggressive biological properties than those with low uptake.

추파 청예작물의 저온 조건하에서 질소의 분배에 관한 연구 I. 외인성 질소의 흡수 및 내인성 질소의 전이 (Nitrogen Patitioning at Low Temperature in Fall-Sowing Species I. Uptake of exogenous N and remobilization of endogenous N)

  • Kim, Tae-Hwan;Kim, Byung-Ho
    • 한국초지조사료학회지
    • /
    • 제17권3호
    • /
    • pp.249-256
    • /
    • 1997
  • A pulse-chase labeling of $^{15}N$ on winter rye (Scale cereale) and forage rape (Brassica napus) grown at $15^{\circ}C$ and $25^{\circ}C$ was carried out to determine the effects of low temperature on the uptake exogenous N and the remobilization of endogenous N. The growth rate of leaves and roots depressed at $5^{\circ}C$. AAer 9 days at $5^{\circ}C$, nitrogen content of leaves decreased to 20% on the average while that of roots increased to 12% compared with the plants grown at $25^{\circ}C$. Total content of $NO_3$- uptake 60m medium was 23.0 and 43.5 mg Nlplant, respectively, for winter rye and forage rape grown at $5^{\circ}C$ during 9 days. These values were corresponded to 59.3 and 26.1% lower uptake than those of $25^{\circ}C$. A large part of 1 5 ~ was distributed into leaves throughout time course in both of two species. The content of $^{15}N$ in leaves of winter rye at day 6 increased to 166 and 296 $\mu^{15}$N/plant compared with the initial value (day 0) in the plants grown at $5^{\circ}C$and $25^{\circ}C$ , corresponding to 90 and 163 $\mu$g N of remobilization h m roots into leaves during the fist 6 days. From 7 to 9 days, 75 and 52 $\mu$gN of outflow 6om leaves were occurred at $5^{\circ}C$ and $25^{\circ}C$. However, little remobilization of endogenous N was estimated in forage rape throughout the entire time course regardless of temperature treatment. Comparing two species studied, winter rye was much sensitively influenced by low temperature on the uptake of exogenous N and the remobilization of endogenous N.

  • PDF

Effect of Suboptimal Nutritional Status on Mineral Uptake and Carbohydrate Metabolism in Tomato Plants

  • Sung, Jwakyung;Lee, Sangmin;Lee, Suyeon;Kim, Rogyoung;Lee, Yejin;Yun, Hongbae;Ha, Sangkeun;Song, Beomheon
    • 한국토양비료학회지
    • /
    • 제46권5호
    • /
    • pp.351-358
    • /
    • 2013
  • A suitable supply of mineral elements into shoot via a root system from growth media makes plants favorable growth and yield. The shortage or surplus of minerals directly affects overall physiological reactions to plants and, especially, strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake and synthesis and translocation of soluble carbohydrates in N, P or K-deficient tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with suboptimal N ($0.5mmol\;L^{-1}\;Ca(NO_3)2{\cdot}4H_2O$ and $0.5mmol\;L^{-1}\;KNO_3$), P ($0.05mmol\;L^{-1}\;KH_2PO_4$), and K ($0.5mmol\;L^{-1}\;KNO_3$) for 30 days. The deficiency of specific mineral element led to a significant decrease in its concentration and affected the concentration of other elements with increasing treatment period. The appearance of the reduction, however, differed slightly between elements. The ratios of N uptake of each treatment to that in NPK sufficient tomato shoots were 4 (N deficient), 50 (P deficient), and 50% (K deficient). The P uptake ratios were 21 (N deficient), 19 (P deficient), and 28% (K deficient) and K uptake ratios were 11 (N deficient), 46 (P deficient), and 7% (K deficient). The deficiency of mineral elements also influenced on carbohydrate metabolism; soluble sugar and starch was substantially enhanced, especially in N or K deficiency. In conclusion, mineral deficiency leads to an adverse carbohydrate metabolism such as immoderate accumulation and restricted translocation as well as reduced mineral uptake and thus results in the reduced plant growth.

Yield and Nitrogen Uptake of Corn in Corn after Soybean Cropping

  • Seo, Jong-Ho;Lee, Ho-Jin;Lee, Jin-Wook
    • 한국작물학회지
    • /
    • 제46권4호
    • /
    • pp.266-271
    • /
    • 2001
  • Soybean can produce high-N residue due to N-fixation, so soybean rotation may increase yield of subsequent corn and reduce N fertilizer on the corn fairly. To find out the contribution of nitrogen to subsequent corn following soybean cultivation, soil nitrate, corn yield, and nitrogen uptake were measured for three continuous corn cropping years after soybean rotation. Three N rates of 0, 80, and 160 kg/ha were applied to three continuous corn following soybean cropping. At 6-leaf stage, soil nitrate amount at the soil depth of 0-30cm ranged from 60 to 80 kgN/ha higher in the first corn cropping year than that in the second and third corn cropping years. Judging from corn N status such as SPAD value, N concentration of ear-leaf and stover at silking stage, N contribution of previous soybean to corn in the first corn year was N fertilizer of approximately 80 kg N/ha. Stover N uptake at silking stage increased from 47 to 52 kg N/ha at the 0, and 80 kg N/ha of N rates in the first corn cropping year compared with those in the second and third corn cropping years. Corn grain yield at the 0 kg N/ha of N rate was 6-7 ton/ha higher in the first corn cropping year than that in the second and third corn cropping years, respectively. When compared the first corn year following soybean cropping with the second and third corn cropping years, N uptake of grain and stover at harvest with low N rates such as 0 and 80 kg N/ha increased from 45 to 67kg N/ha, from 35 to 60 kg N/ha, respectively. N uptake of whole plant by soybean rotation increased from 93 to 118 kg N/ha in the first year compared with that in the second and third corn cropping years. However, the N contribution by soybean cropping was small in the second and third continuous corn cropping years. Therefore, it was concluded that the nitrogen fertilizer of 80-100 kg N/ha in the first corn cropping year could be saved by soybean rotation and annual alternative corn-soybean rotation could be the best rotation system.

  • PDF

Effect of t-butylhydroperoxide on $Na^+-dependent$ Glutamate Uptake in Rabbit Brain Synaptosome

  • Lee, Hyun-Je;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.367-376
    • /
    • 1997
  • The effect of an organic peroxide, t-butylhydroperoxide (t-BHP), on glutamate uptake was studied in synaptosomes prepared from cerebral cortex. t-BHP inhibited the $Na^+-dependent$ glutamate uptake with no change in the $Na^+-independent$ uptake. This effect of t-BHP was not altered by addition of $Ca^{2+}$ channel blockers (verapamil, diltiazem and nifedipine) or $PLA_2$ inhibitors (dibucaine, butacaine and quinacrine). However, the effect was prevented by iron chelators (deferoxamine and phenanthroline) and phenolic antioxidants (N,N'-diphenyl-phenylenediamine, butylated hydroxyanisole, and butylated hydroxytoluene). At low concentrations (<1.0 mM), t-BHP inhibited glutamate uptake without altering lipid peroxidation. Moreover, a large increase in lipid peroxidation by $ascorbate/Fe^{2+}$ was not accompanied by an inhibition of glutamate uptake. The impairment of glutamate uptake by t-BHP was not intimately related to the change in $Na^+-K+-ATPase$ activity. These results suggest that inhibition of glutamate uptake by t-BHP is not totally mediated by peroxidation of membrane lipid, but is associated with direct interactions of glutamate transport proteins with t-BHP metabolites. The $Ca^{2+}$ influx through $Ca^{2+}$ channel or $PLA_2$ activation may not be involved in the t-BHP inhibition of glutamate transport.

  • PDF

Responses of Pea Varieties to Rhizobium Inoculation: Nitrogenase Activity, Dry Matter Production and Nitrogen Uptake

  • Solaiman, A.R.M.;Khondaker, M.;Karim, A.J.M.S.;Hossain, M.M.
    • 한국작물학회지
    • /
    • 제48권5호
    • /
    • pp.361-368
    • /
    • 2003
  • The responses of five varieties and three cultivars of pea (Pisum sativum) to Rhizobium inoculation on nodulation, growth, nitrogenase activity, dry matter production and N uptake were investigated. The pea varieties were IPSA Motorshuti-l, IPSA Motorshuti-2, IPSA Motorshuti-3, BARI Motorshuti-l, BARI Motorshuti-2 and the cultivars were 063, Local small and Local white. Fifty percent seeds of each pea variety/cultivar were inoculated with a mixture of Rhizobium inoculants at rate of 15g/kg seed and the remaining fifty percent seeds were kept uninoculated. The plants inoculated with Rhizobium inoculant significantly increased nodulation, growth, nitrogenase activity, dry matter production and N uptake. Among the varieties/cultivars, BARI Motorshuti-l performed best in almost all parameters including nitrogenase activity of root nodule bacteria of the crop. There were positive correlations among the number and dry weight of nodules (r=$0.987^{**}$, $0.909^{**}$), nitrogenase activity of root nodule bacteria (r=$0.944^{**}$, $0.882^{**}$), dry weight of shoot (r=$0.787^{**}$, $0.952^{**}$), N content (r=$0.594^{**}$, $0.605^{**}$) and N uptake (r=$0.784^{**}$, $0.922^{**}$) by shoot both at flowering and pod filling stages of the crop, respectively. It was concluded that BARI Motorshuti-l in symbiotic association with Rhizobium inoculant performed best in recording nitrogenase activity, dry matter production and N uptake by pea.