Browse > Article

Application of Differential Expression of Genetic Profiles in Brain Tumors with Variable [$^{18}F$]-fluorodeoxyglucose Uptake  

Lee, Seung-Ho (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Yun, Mi-Jin (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Kim, Ki-Nam (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Seo, Sang-Hui (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Sohn, Sung-Hwa (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Kim, Yu-Ri (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Kim, Hye-Won (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Kim, In-Kyoung (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Shim, Boo-Im (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Lee, Seung-Min (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Kim, Meyoung-Kon (Department of Biochemistry & Molecular Biology, College of Medicine, Korea University)
Publication Information
Molecular & Cellular Toxicology / v.3, no.3, 2007 , pp. 198-207 More about this Journal
Abstract
[ $^{18}F$ ]-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) scan has been found to reflect tumor aggressiveness and prognosis in various types of cancer. In this study, the gene expression profiles of glial tumors were evaluated to determine whether glial tumors with high $^{18}F$-FDG uptake have more aggressive biological potential than with low uptake. Surgical specimens were obtained from the 12 patients with glial tumors (4 males and 8 females, age range 42-68 years). The tumor samples were divided into two groups based on the $^{18}F$-FDG uptake PET scan findings: high $^{18}F$-FDG uptake (n=4) and low $^{18}F$-FDG uptake (n=8). The pathological tumor grade was closely correlated with the $^{18}F$-FDG uptake pattern: Glial tumors with high $^{18}F$-FDG uptake were pathologically Edmondson-Steiner grade III, while those with low uptake were grade II. The total RNA was extracted from the frozen tissues of all glial tumors (n=12), and adjacent non-cancerous tissue (n=3). The gene expression profiles were evaluated using cDNA microarray. The glial tumors with high $^{18}F$-FDG uptake showed increase expression of 15 genes compared to those with low uptake (P<0.005). Nine genes were down-regulated. Gene expression is closely related to cell survival, cell-to-cell adhesion or cell spreading; therefore, glial tumors with high $^{18}F$-FDG uptake appear to have more aggressive biological properties than those with low uptake.
Keywords
Glial tumors; $^{18}F$-fluorodeoxyglucose uptake; Positron emission tomography; Gene expression profile; cDNA microarray;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Vansteenkiste, J. F. et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2- deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 17:3201-3206 (1999)   DOI
2 Burt, B. M. et al. Using positron emission tomography with [(18)F]FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia 3:189-195 (2001)   DOI
3 Downey, R. J. et al. Whole body 18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol 21:428-432 (2003)   DOI   ScienceOn
4 Higashi, K., Clavo, A. C. & Wahl, R. L. Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34:414-419 (1993)
5 Mischel, P. S., Cloughesy, T. F. & Nelson, S. F. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5:782-792 (2004)   DOI   ScienceOn
6 Morford, L. A., Boghaert, E. R., Brooks, W. H. & Roszman, T. L. Insulin-like growth factors (IGF) enhance three-dimensional (3D) growth of human glioblastomas. Cancer Lett 115:81-90 (1997)   DOI   ScienceOn
7 Ranke, M. B. & Elmlinger, M. Functional role of insulin- like growth factor binding proteins. Horm Res 48(4): 9-15 (1997)   DOI
8 Blum, W. F. et al. Insulin-like growth factor I (IGFI)- binding protein complex is a better mitogen than free IGF-I. Endocrinology 125:766-772 (1989)   DOI   ScienceOn
9 Eberhart, C. E. et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183-1188 (1994)   DOI
10 Kutchera, W. et al. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA 93:4816-4820 (1996)
11 Zhang, X., Morham, S. G., Langenbach, R. & Young, D. A. Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med 190:451-459 (1999)   DOI
12 Pai, R. et al. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8:289-293 (2002)   DOI   ScienceOn
13 Vawter, M. P. et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 55:641-650 (2001)   DOI   ScienceOn
14 Vesselle, H. et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 6:3837-3844 (2000)
15 Hagge, R. J., Wong, T. Z., & Coleman, R. E. Positron emission tomography: brain tumors and lung cancer. Radiol Clin North Am 39:871-881 (2001)   DOI
16 Kim, C. K., Alavi, J. B., Alavi, A. & Reivich, M. New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxyglucose. J Neurooncol 10:85-91 (1991)   DOI
17 Hida, T. et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 58:3761-3764 (1998)
18 Sheng, G. G. et al. A selective cyclooxygenase 2 inhibitor suppresses the growth of H-ras-transformed rat intestinal epithelial cells. Gastroenterology 113: 1883-1891 (1997)   DOI   ScienceOn
19 Meyer, P. T. et al. Comparison of visual and ROIbased brain tumour grading using $^{18}F-FDG PET: ROC analyses. Eur J Nucl Med 28:165-174 (2001)   DOI   ScienceOn
20 Nakata, B. et al. $^{18}F-fluorodeoxyglucose positron emission tomography and the prognosis of patients with pancreatic adenocarcinoma. Cancer 79:695-699 (1997)   DOI   ScienceOn
21 Smalley, W. E. & DuBois, R. N. Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 39:1-20 (1997)   DOI
22 Fuller, G. N. et al. Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 59:4228-4232 (1999)
23 Di Chiro, G. et al. Issues in the in vivo measurement of glucose metabolism of human central nervous system tumors. Ann Neurol 15:S138-146 (1984)   DOI   ScienceOn
24 Schifter, T. et al. Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 17:509-561 (1993)
25 Meyer, P. T. et al. High F-18 FDG uptake in a lowgrade supratentorial ganglioma: a positron emission tomography case report. Clin Nucl Med 25:694-697 (2000)   DOI   ScienceOn
26 Wong, T. Z., van der Westhuizen, G. J. & Coleman, R. E. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12:615-626 (2002)   DOI
27 Sallinen, S. L. et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60: 6617-6622 (2000)
28 Eisen M. B., Spellman P. T., Brown P. O. & Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863-14868 (1998)
29 Halfpenny, W. et al. A possible prognostic factor in head and neck cancer. Br J Cancer 86:512-516 (2002)   DOI   ScienceOn
30 Jones, J. I. & Clemmons, D. R. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3-34 (1995)
31 Wood, T. L., Streck, R. D. & Pintar, J. E. Expression of the IGFBP-2 gene in post-implantation rat embryos. Development 114:59-66 (1992)
32 Silvestri, L. et al. CYP enzyme polymorphisms and susceptibility to HCV-related chronic liver disease and liver cancer. Int J Cancer 104:310-317 (2003)   DOI   ScienceOn
33 Chung, J. K., et al. Comparison of [$^{18}F]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer. Nucl Med Commun 25:11-17 (2004)   DOI   ScienceOn
34 Sandberg-Nordqvist, A. C. et al. Characterization of insulin-like growth factor 1 in human primary brain tumors. Cancer Res 53:2475-2478 (1993)
35 Buchanan, F. G., Wang, D., Bargiacchi, F. & DuBois, R. N. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278:35451-35457 (2003)   DOI   ScienceOn
36 Hoffman, J. M. et al. FDG-PET in pediatric posterior fossa brain tumors. J Comput Assist Tomogr 16:62-68 (1992)   DOI   ScienceOn
37 Chao, S. T. et al. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191-197 (2001)   DOI   ScienceOn
38 Spaepen, K. et al. Prognostic value of pretransplantation positron emission tomography using fluorine 18- fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 102:53-59 (2003)   DOI   ScienceOn
39 Miller, T. R., Pinkus, E., Dehdashti, F. & Grigsby, P. W. Improved prognostic value of $^{18}F-FDG PET using a simple visual analysis of tumor characteristics in patients with cervical cancer. J Nucl Med 44:192-197 (2003)
40 Bredel, M. et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 65:8679-8689 (2005)   DOI   ScienceOn
41 Ho, P. J. & Baxter, R. C. Insulin-like growth factorbinding protein-2 in patients with prostate carcinoma and benign prostatic hyperplasia. Clin Endocrinol (Oxf) 46:333-342 (1997)
42 Delbeke, D. et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of lowgrade from high-grade brain tumors with PET. Radiology 195:47-52 (1995)   DOI
43 De Witte, O. et al. Prognostic value positron emission tomography with [$^{18}F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39:470-476; discussion 476-477 (1996)   DOI
44 Tanaka, T. S. et al. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci 97:9127-9132 (2000)
45 Hoelzinger, D. B. et al. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7:7-16 (2005)   DOI   ScienceOn
46 Subbaramaiah, K. et al. Transcription of cyclooxygenase- 2 is enhanced in transformed mammary epithelial cells. Cancer Res 56:4424-4429 (1996)
47 Barker, F. G. et al. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115-126 (1997)   DOI   ScienceOn
48 Glick, R. P., Unterman, T. G., Van der Woude, M. & Blaydes, L. Z. Insulin and insulin-like growth factors in central nervous system tumors. Part V: Production of insulin-like growth factors I and II in vitro. J Neurosurg 77:445-450 (1992)   DOI
49 Menouny, M., Binoux, M. & Babajko, S. IGFBP-2 expression in a human cell line is associated with increased IGFBP-3 proteolysis, decreased IGFBP-1 expression and increased tumorigenicity. Int J Cancer 77:874-879 (1998)   DOI   ScienceOn
50 Tucker, O. N. et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 59:987-990 (1999)
51 Chen, C. C. Protein kinase C alpha, delta, epsilon and zeta in C6 glioma cells. TPA induces translocation and down-regulation of conventional and new PKC isoforms but not atypical PKC zeta. FEBS Lett 332: 169-173 (1993)   DOI   ScienceOn
52 Cerro, J. A., Grewal, A., Wood, T. L. & Pintar, J. E. Tissue-specific expression of the insulin-like growth factor binding protein (IGFBP) mRNAs in mouse and rat development. Regul Pept 48:189-198 (1993)   DOI   ScienceOn
53 Butti, G. et al. A study on the biological behavior of human brain tumors. Part II: Steroid receptors and arachidonic acid metabolism. J Neurooncol 10:241-246 (1991)
54 Lee, J. K., Liu, R. S., Shiang, H. R. & Pan, D. H. Usefulness of semiquantitative FDG-PET in the prediction of brain tumor treatment response to gamma knife radiosurgery. J Comput Assist Tomogr 27:525-529 (2003)   DOI   ScienceOn
55 Zapf, J. Physiological role of the insulin-like growth factor binding proteins. Eur J Endocrinol 132:645-654 (1995)   DOI
56 Sano, H. et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res 55:3785-3789 (1995)