References
- Silvestri, L. et al. CYP enzyme polymorphisms and susceptibility to HCV-related chronic liver disease and liver cancer. Int J Cancer 104:310-317 (2003) https://doi.org/10.1002/ijc.10937
- Di Chiro, G. et al. Issues in the in vivo measurement of glucose metabolism of human central nervous system tumors. Ann Neurol 15:S138-146 (1984) https://doi.org/10.1002/ana.410150727
- Hagge, R. J., Wong, T. Z., & Coleman, R. E. Positron emission tomography: brain tumors and lung cancer. Radiol Clin North Am 39:871-881 (2001) https://doi.org/10.1016/S0033-8389(05)70318-3
- Kim, C. K., Alavi, J. B., Alavi, A. & Reivich, M. New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxyglucose. J Neurooncol 10:85-91 (1991) https://doi.org/10.1007/BF00151249
- Delbeke, D. et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of lowgrade from high-grade brain tumors with PET. Radiology 195:47-52 (1995) https://doi.org/10.1148/radiology.195.1.7892494
-
De Witte, O. et al. Prognostic value positron emission tomography with [
$^{18}F ]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 39:470-476; discussion 476-477 (1996) https://doi.org/10.1097/00006123-199609000-00007 - Barker, F. G. et al. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 79:115-126 (1997) https://doi.org/10.1002/(SICI)1097-0142(19970101)79:1<115::AID-CNCR17>3.0.CO;2-7
- Schifter, T. et al. Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 17:509-561 (1993)
- Chao, S. T. et al. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191-197 (2001) https://doi.org/10.1002/ijc.1016
- Vansteenkiste, J. F. et al. Prognostic importance of the standardized uptake value on (18)F-fluoro-2- deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 17:3201-3206 (1999) https://doi.org/10.1200/JCO.1999.17.10.3201
- Halfpenny, W. et al. A possible prognostic factor in head and neck cancer. Br J Cancer 86:512-516 (2002) https://doi.org/10.1038/sj.bjc.6600114
- Spaepen, K. et al. Prognostic value of pretransplantation positron emission tomography using fluorine 18- fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood 102:53-59 (2003) https://doi.org/10.1182/blood-2002-12-3842
-
Nakata, B. et al.
$^{18}F -fluorodeoxyglucose positron emission tomography and the prognosis of patients with pancreatic adenocarcinoma. Cancer 79:695-699 (1997) https://doi.org/10.1002/(SICI)1097-0142(19970215)79:4<695::AID-CNCR6>3.0.CO;2-D - Burt, B. M. et al. Using positron emission tomography with [(18)F]FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia 3:189-195 (2001) https://doi.org/10.1038/sj.neo.7900147
-
Miller, T. R., Pinkus, E., Dehdashti, F. & Grigsby, P. W. Improved prognostic value of
$^{18}F -FDG PET using a simple visual analysis of tumor characteristics in patients with cervical cancer. J Nucl Med 44:192-197 (2003) - Downey, R. J. et al. Whole body 18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol 21:428-432 (2003) https://doi.org/10.1200/JCO.2003.04.013
-
Chung, J. K., et al. Comparison of [
$^{18}F ]fluorodeoxyglucose uptake with glucose transporter-1 expression and proliferation rate in human glioma and non-small-cell lung cancer. Nucl Med Commun 25:11-17 (2004) https://doi.org/10.1097/00006231-200401000-00003 - Meyer, P. T. et al. High F-18 FDG uptake in a lowgrade supratentorial ganglioma: a positron emission tomography case report. Clin Nucl Med 25:694-697 (2000) https://doi.org/10.1097/00003072-200009000-00008
- Lee, J. K., Liu, R. S., Shiang, H. R. & Pan, D. H. Usefulness of semiquantitative FDG-PET in the prediction of brain tumor treatment response to gamma knife radiosurgery. J Comput Assist Tomogr 27:525-529 (2003) https://doi.org/10.1097/00004728-200307000-00012
- Wong, T. Z., van der Westhuizen, G. J. & Coleman, R. E. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12:615-626 (2002) https://doi.org/10.1016/S1052-5149(02)00033-3
- Hoffman, J. M. et al. FDG-PET in pediatric posterior fossa brain tumors. J Comput Assist Tomogr 16:62-68 (1992) https://doi.org/10.1097/00004728-199201000-00011
-
Meyer, P. T. et al. Comparison of visual and ROIbased brain tumour grading using
$^{18}F -FDG PET: ROC analyses. Eur J Nucl Med 28:165-174 (2001) https://doi.org/10.1007/s002590000428 - Vesselle, H. et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 6:3837-3844 (2000)
- Higashi, K., Clavo, A. C. & Wahl, R. L. Does FDG uptake measure proliferative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 34:414-419 (1993)
- Chen, C. C. Protein kinase C alpha, delta, epsilon and zeta in C6 glioma cells. TPA induces translocation and down-regulation of conventional and new PKC isoforms but not atypical PKC zeta. FEBS Lett 332: 169-173 (1993) https://doi.org/10.1016/0014-5793(93)80506-P
- Bredel, M. et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 65:8679-8689 (2005) https://doi.org/10.1158/0008-5472.CAN-05-1204
- Mischel, P. S., Cloughesy, T. F. & Nelson, S. F. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 5:782-792 (2004) https://doi.org/10.1038/nrn1518
- Sallinen, S. L. et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60: 6617-6622 (2000)
- Fuller, G. N. et al. Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 59:4228-4232 (1999)
- Hoelzinger, D. B. et al. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7:7-16 (2005) https://doi.org/10.1593/neo.04535
- Glick, R. P., Unterman, T. G., Van der Woude, M. & Blaydes, L. Z. Insulin and insulin-like growth factors in central nervous system tumors. Part V: Production of insulin-like growth factors I and II in vitro. J Neurosurg 77:445-450 (1992) https://doi.org/10.3171/jns.1992.77.3.0445
- Sandberg-Nordqvist, A. C. et al. Characterization of insulin-like growth factor 1 in human primary brain tumors. Cancer Res 53:2475-2478 (1993)
- Morford, L. A., Boghaert, E. R., Brooks, W. H. & Roszman, T. L. Insulin-like growth factors (IGF) enhance three-dimensional (3D) growth of human glioblastomas. Cancer Lett 115:81-90 (1997) https://doi.org/10.1016/S0304-3835(97)04717-4
- Jones, J. I. & Clemmons, D. R. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3-34 (1995)
- Ranke, M. B. & Elmlinger, M. Functional role of insulin- like growth factor binding proteins. Horm Res 48(4): 9-15 (1997) https://doi.org/10.1159/000191304
- Zapf, J. Physiological role of the insulin-like growth factor binding proteins. Eur J Endocrinol 132:645-654 (1995) https://doi.org/10.1530/eje.0.1320645
- Blum, W. F. et al. Insulin-like growth factor I (IGFI)- binding protein complex is a better mitogen than free IGF-I. Endocrinology 125:766-772 (1989) https://doi.org/10.1210/endo-125-2-766
- Cerro, J. A., Grewal, A., Wood, T. L. & Pintar, J. E. Tissue-specific expression of the insulin-like growth factor binding protein (IGFBP) mRNAs in mouse and rat development. Regul Pept 48:189-198 (1993) https://doi.org/10.1016/0167-0115(93)90347-B
- Wood, T. L., Streck, R. D. & Pintar, J. E. Expression of the IGFBP-2 gene in post-implantation rat embryos. Development 114:59-66 (1992)
- Ho, P. J. & Baxter, R. C. Insulin-like growth factorbinding protein-2 in patients with prostate carcinoma and benign prostatic hyperplasia. Clin Endocrinol (Oxf) 46:333-342 (1997)
- Menouny, M., Binoux, M. & Babajko, S. IGFBP-2 expression in a human cell line is associated with increased IGFBP-3 proteolysis, decreased IGFBP-1 expression and increased tumorigenicity. Int J Cancer 77:874-879 (1998) https://doi.org/10.1002/(SICI)1097-0215(19980911)77:6<874::AID-IJC13>3.0.CO;2-1
- Eberhart, C. E. et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183-1188 (1994) https://doi.org/10.1016/0016-5085(94)90246-1
- Kutchera, W. et al. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA 93:4816-4820 (1996)
- Sano, H. et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res 55:3785-3789 (1995)
- Smalley, W. E. & DuBois, R. N. Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 39:1-20 (1997) https://doi.org/10.1016/S1054-3589(08)60067-8
- Hida, T. et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res 58:3761-3764 (1998)
- Tucker, O. N. et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 59:987-990 (1999)
- Sheng, G. G. et al. A selective cyclooxygenase 2 inhibitor suppresses the growth of H-ras-transformed rat intestinal epithelial cells. Gastroenterology 113: 1883-1891 (1997) https://doi.org/10.1016/S0016-5085(97)70007-6
- Subbaramaiah, K. et al. Transcription of cyclooxygenase- 2 is enhanced in transformed mammary epithelial cells. Cancer Res 56:4424-4429 (1996)
- Zhang, X., Morham, S. G., Langenbach, R. & Young, D. A. Malignant transformation and antineoplastic actions of nonsteroidal antiinflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med 190:451-459 (1999) https://doi.org/10.1084/jem.190.4.451
- Butti, G. et al. A study on the biological behavior of human brain tumors. Part II: Steroid receptors and arachidonic acid metabolism. J Neurooncol 10:241-246 (1991)
- Pai, R. et al. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med 8:289-293 (2002) https://doi.org/10.1038/nm0302-289
- Buchanan, F. G., Wang, D., Bargiacchi, F. & DuBois, R. N. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem 278:35451-35457 (2003) https://doi.org/10.1074/jbc.M302474200
- Vawter, M. P. et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 55:641-650 (2001) https://doi.org/10.1016/S0361-9230(01)00522-6
- Tanaka, T. S. et al. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci 97:9127-9132 (2000)
- Eisen M. B., Spellman P. T., Brown P. O. & Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863-14868 (1998)