• Title/Summary/Keyword: N removal

Search Result 2,200, Processing Time 0.028 seconds

Investigation on Trend Removal in Time Domain Analysis of Electrochemical Noise Data Using Polynomial Fitting and Moving Average Removal Methods

  • Havashinejadian, E.;Danaee, I.;Eskandari, H.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 2017
  • Electrochemical noise signals in many cases exhibit a DC drift that should be removed prior to further data analysis. Polynomial fitting and moving average removal method have been used to remove trends of electrochemical noise (EN) in time domain. The corrosion inhibition of synthesized schiff base N,N'-bis(3,5-dihydroxyacetophenone)-2,2-dimethylpropandiimine on API-5L-X70 steel in hydrochloric acid solutions were used to study the effects of drifts removal methods on noise resistance calculation. Also, electrochemical impedance spectroscopy (EIS) was used to study the corrosion inhibition property of the inhibitor. The results showed that for the calculation of $R_n$, both methods were effective in trend removal and the polynomial with m=4 and MAR with p=40 were in agreement.

Enbancement of Treatement Efficiency in a Biological Nutrient Removal Process by addition of Volatile Fatty Acids (휘발성 지방산의 주입을 통한 생물학적 영양염류 제거공정의 효율증진에 관한 연구)

  • Choung, Yoon Kyoo;Ko, Kwang Baik;Kim, Sue Jin;Yim, Seong Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.3
    • /
    • pp.73-82
    • /
    • 1996
  • The removal efficiencies of organic substrates, nitrogen and phosphorus in the anaerobic-aerobic biological phosphorus removal process were investigated by addition of acetic acid, propionic acid and butyric acid which are normal volatile fatty acids contained in anaerobic digester supernatants. Substrate utilization coefficients for the phosphorus release and uptake were also estimated. The effect of a VFA, which showed higher phosphorus removal efficiency than the other VFAs did, was also studied in an anaerobic-aerobic-anoxic biological nutrient removal process. For the anaerobic-aerobic process added by VFA, the phosphorus removal efficiencies were up to about 68%, 55% and 61% for the reactors of acetic acid, propionic acid and butyric acid added, respectively, which indicates the efficiencies were increased by about 8-21%, comparing to that of 47% for the reactor with no VFA added. There were no significant difference in removal efficiencies for organic substrate and $NH_3-N$ without regard to addition of VFA. However, the removal efficiency of total nitrogen was increased in the case of VFA added, since $NO_3-N$ was less produced. For the anaerobic-aerobic-anoxic process added VFA, the removal efficiencies for $NH_3-N$ and $PO{_4}^{3-}-P$ were increased by 5% and 13%, respectively, comparing with them in the reactors not added VFA.

  • PDF

The syudy of reaction kinetics in the thermophilic aerobic digestion process of piggery wastewater (축산폐수의 고온호기성 소화공정에서의 반응동력학 연구)

  • Kim, Yong-Kwan;Kim, Seok-Won;Kim, Baek-Jae
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.97-102
    • /
    • 2007
  • The piggery wastewater is the major source of the water pollution problem in the rural area. The treatment alternatives for piggery wastewater are limited by the characteristics of both high organic and nitrogen(N) content. In order to investigate an efficient N removal system, the thermophilic aerobic digestion process was examined. The experiment was investigated organic and nitrogen removal efficiency at various HRTs and air supply volume. The results of semi-continuous experiment indicated that a higher removal of the soluble portion of COD was achieved with the longer HRTs. However, the inert portion of COD in piggery wastewater was not much changed by thermophilic aerobic digestion. In addition, with the higher HRT of 3 days, up to 79% of NH4-N removal efficiency was achieved. Lower the HRTs, a decrease of NH4-N removal was founds. The gas samples from the lab reactor were analyzed along with the N content in influent and effluent. The N2O formation in our system indicates a novel aerobic deammonification process occurred during the thermophilic aerobic digestion. Both N02 and N03 were not presented in the effluent of thermophilic aerobic digester. With the HRT of 3 days, 36.4% of influent N(or 57.5% removal N) was aerobically converted to N2O gas. The ammonium conversion to N2O gas significantly decrease to 4.5% at low HRT of .05 day..

  • PDF

Removal of $NH_4-N$ from Synthetic Wastewater Using Soil Column (토양컬럼을 이용한 합성폐수중의 암모니아성질소 제거)

  • Park San Ill;Cheong Kyung Hoon;Kim Hai Yeon;Paik Ke Jin
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.280-286
    • /
    • 2005
  • The purpose of this investigation was to evaluate removal efficiency of $NH_4-N$ using the soil column. Soil, oyster shell and natural zeolite were used as a supporting media of soil column. Removal efficiencies of $NH_4-N$ were $35.9\%,\;41\%\;and\;93.4\%$ for the soil column packed with soil, natural $zeolite(20\%)$ and oyster $shell(20\%)$ at HRT of 72 hours, respectively. The addition of $20\%$ oyster shell to the soil accelerated nitrification in soil column. The influent ammonia nitrogen was mostly converted to nitrate nitrogen in the soil column and little ammonia nitrogen was found in the effluent. When the influent $NH_4-N$ concentration was 200 mg/l, the NIL-N removal was decreased at HRT of 48 hours, while nitrification was significantly increased after mechanical aeration. It was suggested that nitrification from higher $NH_4-N$ concentration was more affected by aeration in soil column process. The number of nitrifiers was approximately in a level of about $10^6\;MPN/g{\cdot}soil$ in the soil column mixed with oyster shell ($20\%$).

Nitrogen removal, nitrous oxide emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes

  • Sun, Yuepeng;Xin, Liwei;Wu, Guangxue;Guan, Yuntao
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.107-116
    • /
    • 2019
  • Nitrogen removal, nitrous oxide ($N_2O$) emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes were investigated. Two sequencing batch reactors (SBRs) and two continuous-flow multiple anoxic and aerobic reactors (CMRs) were operated under high dissolved oxygen (DO) (SBR-H and CMR-H) and low DO (SBR-L and CMR-L) concentrations, respectively. Nitrogen removal was enhanced under CMR and low DO conditions (CMR-L). The highest total inorganic nitrogen removal efficiency of 91.5% was achieved. Higher nitrifying and denitrifying activities in SBRs were observed. CMRs possessed higher $N_2O$ emission factors during nitrification in the presence of organics, with the highest $N_2O$ emission factor of 60.7% in CMR-L. SBR and low DO conditions promoted $N_2O$ emission during denitrification. CMR systems had higher microbial diversity. Candidatus Accumulibacter, Nitrosomonadaceae and putative denitrifiers ($N_2O$ reducers and producers) were responsible for $N_2O$ emission.

A Study on Enhancement of Nitrate Removal Efficiency using Surface-Modified Zero-Valent Iron Nanoparticles (표면개질된 영가철 나노입자를 이용한 질산성 질소 제거율 향상에 대한 연구)

  • Lim, Taesook;Cho, Yunchul;Cho, Changhwan;Choi, Sangil
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.517-524
    • /
    • 2016
  • In order to treat groundwater containing high levels of nitrate, nitrate reduction by nano sized zero-valent iron (nZVI) was studied using batch experiments. Compared to nitrate removal efficiencies at different mass ratios of $nitrate/Fe^0$, the removal efficiency at the mass ratio of 0.02% was the highest(54.59%). To enhance nitrate removal efficiency, surface modification of nZVI was performed using metallic catalysis such as Pd, Ni and Cu. Nitrate removal efficiency by Cu-nZVI (at $catalyst/Fe^0$ mass ratio of 0.1%) was 66.34%. It showed that the removal efficiency of Cu-nZVI was greater than that of the other catalysts. The observed rate constant ($k_{obs}$) of nitrate reduction by Cu-nZVI was estimated to $0.7501min^{-1}$ at the Cu/Fe mass ratio of 0.1%. On the other hand, TEM images showed that the average particle sizes of synthetic nZVI and Cu-nZVI were 40~60 and 80~100 nm, respectively. The results imply that catalyst effects may be more important than particle size effects in the enhancement of nitrate reduction by nZVI.

A Study on the filtering bed of porous sintering-product and hydrophytes for sewage treatment (오·폐수처리를 위한 수생식물 다공성 소결체여상의 기초연구)

  • Kim, Ju-Hyung;Yun, Chan;Oh, Joon-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.89-97
    • /
    • 2001
  • The purpose of this study was to find the optimum condition of the high removal efficiency of water pollutant as sewage treatment technology using a filtering bed charged with porous sintering-pellet which was planted with hydrophytes. Experiment was carried out by changing concentration of water pollutants(COD, T-N, T-P), kind of hydrophyte, kinds of filtering material and size, and HRT. The result of removal efficiency was obtained as following: COD removal 73.8~87.1% for input concentration range of 50~450mg/L, T-N removal 61.3~77.3% for input concentration range of 7~124mg/L, T-P removal 89.5~99.1% for input concentration ranger of 3~27mg/L. In a comparative experiment of three kinds of hydrophyte(Iris pseudoacorus, Phragmites communis $T_{RIN}$., Oenanthe javanica Dc.), the best removal efficiency of COD and T-N was gained with Iris pse-udoacorus, and Phragmites communis $T_{RIN}$ showed better result than two hydrophytes for the removal efficiency of T-P. In a comparative experiment of four kinds of filtering-materials, the removal efficiencies were in the order of porous sintering-pellet, gravel, nonused-tire and nonused-concrete. It was found that for the porous sintering-pellet, the smaller its diameter, the better its result. In the filtering bed in which was charged with porous sintering-pellets of 5mm diameter and planted with Iris pseudoacorus, the removal efficiency of COD, T-N and T-P were over 80%, 70% and 90% under the concentration of COD 250mg/L, T-N 70mg/L and T-P 15mg/L for 24hrs treatment. Thus, we concluded that a filtering bed charged with porous sintering-pellet and planted with hydrophytes will be suitable for treatment of sewage water as a pro-natural treatment technology.

  • PDF

Comparison of Nitrogen Removal in Reed Wetlands with and Without Open Water Purifying Effluent from a Treatment Pond (하천수를 정화하는 갈대습지의 개수부에 의한 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2005
  • Nitrate($NO_3-N$) and total nitrogen(TN) removal by a reed wetland with open water(Wetland 1) was compared with that of a reed wetland without open water(Wetland 2) from March to October 2002. The two wetlands were 25mL by 6mW. An open water area, 3mL by 6mW was designed at the middle of Wetland 1. Reeds(Phragmites australis) were transplanted into the wetlands in June 2000. Water of Sinyang Stream flowing into the Kohung Estuarine Lake located in the southern part of Korea was pumped into a primary treatment pond, whose effluent was discharged into the secondary pond. Effluent from the secondary pond was funneled into the wetlands. Inflow into the wetlands averaged about 20.0$m^3$/day and their hydraulic retention time was approximately 1.5 days. Average $NO_3-N$ removal by Wetland 1 was 117.61mg/$m^2{\cdot}day$ and that by Wetland 2 was 106.39mg/$m^2{\cdot}day$. $NO_3-N$ removal efficiency of Wetland 1 and 2 was 37% and 34%, respectively. TN removal by Wetlands 1 and 2 averaged 226.80 and 214.54mg/$m^2{\cdot}day$, respectively. TN abatement efficiency of Wetland 1 was 43% and that of Wetland 2 was 40%. $NO_3-N$ removal efficiency of Wetland 1 was significantly higher(p=0.038) than Wetland 2. TN removal efficiency of Wetland 1 was also significantly higher(p=0.044) than Wetland 2. The wetland with open water was more efficient for removal of $NO_3-N$ and TN than one without.

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok;Ahn, Chi-Yong;Srivastava, Ankita;Oh, Hee-Mock
    • ALGAE
    • /
    • v.33 no.4
    • /
    • pp.319-327
    • /
    • 2018
  • Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.

Removal Efficiency of Pollutants in Agricultural Wastewater by Constructed Wetlands on Reclaimed Land in the Goheung Bay (고흥만 간척지 내 인공습지에 의한 농경배수 정화효율에 관한 연구)

  • Yu, Hun-Sun;Kang, Dong-Hwan;Kwon, Byung-Hyuk
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.37-47
    • /
    • 2009
  • This research was conducted at the constructed wetland in Goheung reclaimed land, and water quality components were measured at the 12 points in 15 March 2008 and 10 January 2009, respectively. Temperature, pH, DO, EC and salinity components were measured at the field, and TOC, Cl-, COD, TSS, T-P and TN components were analyzed laboratory. Concentrations of field measured components at inflow points were higher than in constructed wetland. TOC concentration ratio of inflow water to constructed wetland water was higher in January, and Cl concentration ratio of it was higher in March. And, COD concentration ratio of it were 1.37 for March and 1.49 for January, respectively. T-P and T-N concentration ratios of it at inflow points were higher 3 times than in constructed wetland. Constructed wetland attenuated concentration of contaminated components inflow to it. Removal efficiencies of Cl-, T-P and T-N components in inflow water were high at the constructed wetland. removal efficiencies of Cl component were 83% for 1st monitoring and 76% for 2nd monitoring, this removal efficiency be caused by dilution effect of constructed wetland. removal efficiencies of T-P component were 67% for 1st monitoring and 69% for 2nd monitoring, and they of T-N component were 100% for 1st monitoring and 95% for 2nd monitoring. Abnormal removal efficiency of T-N component is caused that nitrogen in inflow water was a little. Removal efficiency of T-P component was higher in January, and T-N component was higher in March. This is caused by environmental difference between growing season and winter.

  • PDF