• Title/Summary/Keyword: N immobilization

Search Result 161, Processing Time 0.023 seconds

Available Organic Carbon Controls Nitrification and Immobilization of Ammonium in an Acid Loam-Textured Soil

  • Choi, Woo-Jung;Lee, Sang-Mo;Han, Gwang-Hyun;Yoon, Kwang-Sik;Jung, Jae-Woon;Lim, Sang-Sun;Kwak, Jin-Hyeob
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • Effect of organic-C on immobilization and nitrification patterns in acidic soil was examined during 20 weeks incubation period to verify if organic amendments such as composted material can increase soil retention of N by stimulating microbial immobilization of $NH_4^+$. Four treatments were laid out: control without fertilizer N and glucose (treatment code: S), ammonium sulfate (SN), ammonium sulfate with single glucose at the commencement (0 week) of incubation (SNG), and ammonium sulfate with double glucose at 0 and 4 weeks of incubation (SNGG). Glucose application (SNG) significantly increased microbial immobilization of $NH_4^+$ within 1 week of incubation over SN. Immobilization was followed by remineralization thereafter; however, second-application of glucose (SNGG) restored $NH_4^+$ immobilization. At the same time, nitrification was significantly inhibited by glucose application as indicated by consistently low $NO_3^-$ concentration in SNG and SNGG soils, suggesting that microbial assimilation of $NH_4^+$ is predominant compared to nitrification when available C-source is abundant. These results suggest application of chemical fertilizer-N with organic amendment would have beneficial effect on soil-N retention and environmental conservation by reducing production of $NO_3^-$ which is likely to be lost through leaching or denitrification.

Optimization of the Condition of Immobilized Photobacterium phosphoreum with Strontium Alginate (Strontium Alginate를 담체로 한 Photobacterium phosphoreum 고정화 조건의 최적화)

  • 이홍주;김현숙;정계훈;이은수;전억한
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • Since the condition of immobilization must be optimized, it is very important to know whether and on how conditions bacterial cells retain their metabolic activity during immobilization process. A bioluminescence intensity had the maximum value when cell concentrations were between 1.0 and 1.2 measured at O.D660. The strontium alginate was used as an immobilization matrix and two independent factors for immobilization of Photobacterium phosphoreum with strontium alginate were optimized with the response surface methodology(RSM) considering degree of bioluminescence. As a result, the optimum concentration for immobilization was found to be 2.4%(w/w) for sodium alginate and 0.31M for strontium chloride, respectively. A dilution was carried out with 2.5%(w/v) NaCl solution that is an optimum environmental condition for growth of P. phosphoreum. Under the such condition of immobilization, hardness could be predicted as 4.66$\times$104N/$m^2$ and it took different time according to the volume of matrix to be immobilized completely.

  • PDF

Stabilization of a Raw-Starch-Digesting Amylase by Multipoint Covalent Attachment on Glutaraldehyde-Activated Amberlite Beads

  • Nwagu, Tochukwu N.;Okolo, Bartho N.;Aoyagi, Hideki
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.628-636
    • /
    • 2012
  • Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at $60^{\circ}C$, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at $40^{\circ}C$. The apparent $K_m$ of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.

Weight Loss and Nutrient Dynamics during Leaf Litter Decomposition of Quercus mongolica in Mt. Worak National Park

  • Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.123-127
    • /
    • 2009
  • Weight loss and nutrient dynamics of Quercus mongolica leaf litter during decomposition were investigated from December 2005 through August 2008 in Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. The decay constant (k) of Q. mongolica litter was 0.26. After 33 months decomposition, remaining weight of Q. mongolica litter was 49.3$\pm$4.4%. Initial C/N and C/P ratios of Q. mongolica litter were 43.3 and 2,032, respectively. C/N ratio in decomposing litter decreased rapidly from the beginning to nine months decomposition, and then showed more or less constant. C/P ratio increased to 2,407 after three months decomposition, and then decreased steadily thereafter. N and P concentration increased significantly during decomposition. N immobilization occurred from the beginning through 18 months decomposition, and mineralization occurred afterwards in decomposing litter. P immobilized significantly from fifteen months during decomposition. K concentration decreased rapidly from the beginning to six months decomposition. However it showed an increasing pattern during later stage of decomposition. Remaining K decreased rapidly during early stage of decomposition. There was no net K immobilization. Ca concentration increased from the beginning to twelve months decomposition, and then decreased rapidly till twenty one months elapsed. However, it increased again thereafter. Ca mineralization occurred from fifteen months. Mg concentration increased during decomposition. There was no Mg immobilization during litter decomposition. After 33 months decomposition, remaining N, P, K, Ca and Mg in Q. mongolica litter were 79.2, 110.9, 36.2, 52.7 and 74.4%, respectively.

Determining Effect of Oyster Shell on Cadmium Extractability and Mechanism of Immobilization in Arable Soil (농경지 토양에서 패화석에 의한 카드뮴의 용출성 및 부동화 기작 구명)

  • Hong, Chang-Oh;Noh, Yong-Dong;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.245-253
    • /
    • 2014
  • BACKGROUND: Oyster shell(OS) is alkaline with pH 9.8, porous, and has high concentration of $CaCO_3$. It could be used as an alternative of lime fertilizer to immobilize cadmium(Cd) in heavy metal contaminated arable soil. Therefore, this study has been conducted to compare effects of calcium(Ca) materials [OS and $Ca(OH)_2$] on Cd extractability in contaminated soil and determined mechanisms of Cd immobilization with OS. METHODS AND RESULTS: Both Ca materials were added at the rates of 0, 0.1, 0.2, 0.4, and 0.8% (wt Ca wt-1) in Cd contaminated soil and the mixtures were incubated at $25^{\circ}C$ for 4 weeks. Both Ca materials increased pH and negative charge of soil with increasing Ca addition and decreased 1N $NH_4OAc$ extractable Cd concentration. 0.1 N HCl extractable Cd concentration markedly decreased with addition of OS. 1 N $NH_4OAc$ extractable Cd concentration was related with pH and net negative charge of soil, but not with 0.1 N HCl extractable Cd concentration. We assumed that Cd immobilization with $Ca(OH)_2$ was mainly attributed to Cd adsorption resulted from increase in pH-induced negative charge of soil. Scanning electron microscope (SEM) images and energy dispersive spectroscopy(EDS) analyses were conducted to determine mechanism of Cd immobilization with OS. There was no visible precipitation on surface of both Ca materials. However, Cd was detected in innerlayer of OS by EDS analyses but not in that of $Ca(OH)_2$. CONCLUSION: We concluded that Cd immobilization with OS was different from that with $Ca(OH)_2$. OS might adsorbed interlayer of oyster shell or have other chemical reactions.

Effects of Short-term Immobilization Stress on the Mouse Serum Concentrations of Cortisol and Dehydroepiandrosterone Sulphate (단기 속박스트레스가 마우스 혈청 Cortisol, Dehydroepiandrosterone Sulphate 농도에 미치는 영향)

  • 차정호;최광수;최형송
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.115-120
    • /
    • 2000
  • We have investigated the effect of short-term immobilization stress on the serum concentrations of cortisol and DHEAS in BALB/c male mice. Serum cortisol and DHEAS concentrations were measured by radioimmunoassay(RIA). We found there were significantly increased in the cortisol levels in 30 min-stressed group(Ⅰ-30N) compared with control(C) group (p<0.01), and also increased with significance in 120 min-stressed group(I-120N) compared with C group(p<0.01). Cortisol concentrations were significantly increased in both 30 min-stressed group(Ⅰ-30T), and 120 min-stressed group(Ⅰ-120T) compared with C group(p<0.01). The sustained increase of cortisol levels were observed in both SG treated and SG non-treated group. Serum cortisol levels were lower in SG treated group than SG non-treated group with significance(p<0.01). By contrast, DHEAS levels were slightly decreased without significance in Ⅰ-30N, but significantly decreased in Ⅰ-120N compared with C group(p<0.01). There were slightly decreased in the DHEAS levels in Ⅰ-30T, but significantly decreased in Ⅰ-120T compared with C group(p<0.01). However, SG treatment did not induce any significant changes of DHEAS levels in both 30 min and 120 min-stressed group. Though short-term immobilization stress, the continuous decline of DHEAS levels were observed. Therefore, these results show that short-term immobilization stress affects the serum concentrations of cortisol and DHEAS in mice.

  • PDF

Anti-Stress Effects of Ginseng in Immobilization-Stressed Rats

  • Choi, Eun-Ha;Lee, Hyun-Jung;Kim, Cheol-Jin;Kim, Jong-Tae;Kwun, In-Sook;Kim, Yang-Ha
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Stress is a global menace exacerbated by the advancement of industrialization. Failure of stress management is to a breakdown of the psychological and physiological protection mechanisms against stress. The aim of present study was to investigate the anti-stress potential of ginseng against immobilization stress. Male Sprague-Dawley rats (n=24) were divided into three groups; (i) control, (ii) immobilization stress (2hr daily, for 2 weeks), and (iii) immobilization stress (2 hr daily, for 2 weeks) plus oral administration of ginseng (200 mg/kg BW Id). Immobilization stress resulted in a significant inhibition of body weight gain by 45 % and a significant decrease in the tissue weights of thymus and spleen (p < 0.05). The concentrations of blood GOT and GPT were significantly increased in the immobilization-stressed group compared to the control group (p < 0.05). There were no differences in the blood cholesterol levels among groups. Ginseng administration in the immobilization-stressed group tended to reverse the lack of body weight gain and food intake, though not significantly. The ginseng-administered group showed a significant reversal in the stress-induced effect on spleen and thymus weight, increasing the tissue weights by 16% and 20%, respectively, compared to immobilization-stressed group (p<0.05). The plasma corticosterone level was significantly increased in the stressed group by 39 % compared to the control group (p<0.05), but ginseng administration significantly reversed the stress-induced increase in plasma corticosterone by 15 % compared to the immobilization-stressed group. The present study suggests that the anti-stress effect of ginseng is mediated by normalization of stress-induced changes in the circulating hormones and a reversal of tissue weight loss, thereby returning the body to normal homeostasis.

The Effects of Acupuncture at GB34 on Disuse Muscle Atrophy in Rats (흰쥐의 불용성 근위축에 양릉천 자침이 미치는 효과)

  • Kim, Bum Hoi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • Objectives Disuse muscle atrophy occurs in response to pathologies such as joint immobilization, inactivity or bed rest. Muscle disuse is accompanied by an increase in apoptotic signaling, which mediates some of the responses to unloading in the muscle. GB34 (Yanglingquan) is a acupuncture point on the lower leg and one of the most frequently used points in various skeletomuscular diseases. In this study, the hypothesis that the acupuncture at GB34 could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The left hindlimb immobilization was performed with casting tape in both GB34 group (n=10) and Control group (n=10). The rats in GB34 group were daily treated with acupuncture at GB34. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both GB34 and Control groups were assessed by hematoxylin and eosin staining. To investigate the immobilization-induced muscular apoptosis, the immunohistochemical analysis of Bax and Bcl-2 was carried out. Results GB34 group represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. The acupuncture at GB34 significantly reduced the immunoreactivity of BAX and increased the immunoreactivity of Bcl-2 in gastrocnemius muscle compared with Control group. Conclusions These results suggest that the acupuncture at GB34 has protective effects against immobilization-induced muscle atrophy by regulating the activities of apoptosis-associated BAX/Bcl-2 proteins in gastrocnemius muscle.

Chemically Modified Sepharose as Support for the Immobilization of Cholesterol Oxidase

  • Yang, Hailin;Chen, Yi;Xin, Yu;Zhang, Ling;Zhang, Yuran;Wang, Wu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1212-1220
    • /
    • 2013
  • Because the cholesterol oxidase from Brevibacterium sp. M201008 was not as stable as the free enzyme form, it had been covalently immobilized onto chemically modified Sepharose particles via N-ethyl-N'-3-dimethylaminopropyl carbodiimide. The optimum immobilization conditions were determined, and the immobilized enzyme activity obtained was 12.01 U/g Sepharose-ethylenediamine. The immobilization of the enzyme was characterized by Fourier transform infrared spectroscopy. The immobilized enzyme exhibited the maximal activity at $35^{\circ}C$ and pH 7.5, which was unchanged compared with the free form. After being repeatedly used 20 times, the immobilized enzyme retained more than 40.43% of its original activity. The immobilized enzyme showed better operational stability, including wider thermal and pH ranges, and retained 62.87% activity after 20 days of storage at $4^{\circ}C$, which was longer than the free enzyme.

The Protective Effects of Dangguibohyul-tang (Dangguibuxuetang) against Disuse Muscle Atrophy in Rats (흰쥐의 불용성 근위축에 당귀보혈탕이 미치는 영향과 그 기전에 관한 고찰)

  • Kim, Bum Hoi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • Objectives Oxidative stress, in which antioxidant proteins and scavenger protection are overwhelmed by reactive oxygen species (ROS) production, is recognized as one of central causes of disuse muscle atrophy. In this study, the hypothesis that oral treatment with Dangguibohyul-tang (Dangguibuxuetang) could attenuate immobilization-induced skeletal muscle atrophy was tested. Methods The hindlimb immobilization was performed with casting tape to keep the left ankle joint in a fully extended position. The Rats in Dangguibohyul-tang treated group (DGBHT) (n=10) were orally administrated Dangguibohyul-tang water extract, and rats of Control group (n=10) were given with saline only. After 2 weeks of immobilization, the morphology of right and left gastrocnemius muscles in both DGBHT and Control groups were assessed by hematoxylin and eosin staining. Results Dangguibohyul-tang water extract represented the significant protective effects against the reductions of the left gastrocnemius muscles weight and average cross section area to compared with Control group. Moreover, the treatment with Dangguibohyul-tang extract significantly enhanced the Cu/Zn-SOD activities in gastrocnemius muscle compared with Control group. Conclusions Thses results suggest that Dangguibohyul-tang has protective effects against immobilization-induced muscle atrophy by increasing the Cu/Zn-SOD activities in gastrocnemius muscle.