• Title/Summary/Keyword: N fertilization

Search Result 814, Processing Time 0.031 seconds

Influence of Controlled-release Fertilizer Levels on Rice Growth, Weed Control and Nitrogen Efficiency in Paper Mulching Transplanting (벼 종이멀칭이앙 시 완효성비료 수준이 벼 생육, 잡초방제 및 질소효율에 미치는 영향)

  • Jeon, Weon-Tai;Yang, Won-Ha;Roh, Sug-Won;Kim, Min-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.345-350
    • /
    • 2006
  • Recently we have interest on rice products developed by environment-friendly management. The technology of paper mulching was practised without herbicide in machine transplanting cultivation of paddy. A field experiment was conducted on Gangseo series (coarse loamy, mixed, nonacid, mesic family of Aquic Fluventic Eutrochrepts) at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Republic of Korea in 2004. This experiment was carried out to evaluate rice growth, weed control and nitrogen efficiency by the different controlled-release fertilizer levels in paper mulching transplanting. Treatments consisted of conventional fertilization, controlled-release fertilizer (100%, 80%, 60%) compared with nitrogen amount ($110kg\;ha^{-1}$) of conventional fertilization and no nitrogen plot. Mulching paper consisted of recycled paper which was coated with biodegradable plastics. There were no differences between conventional rice transplanting and paper mulching on missing hills. Weed occurrence and control were diverse and low as fertilizer amount increased. Plant height and tiller number per hill increased as fertilizer amount decreased. There were no difference between controlled-release fertilizer 80% and conventional fertilization plot on rice growth traits. Leaf color and $NH_4{^+}-N$ in soil had similar trends. There was no difference in yield between controlled-release fertilizer 80% and conventional fertilization plot. Agronomic nitrogen-use efficiency was high as fertilizer amount decreased. Therefore, these results suggested controlled-release fertilizer 80% should be optimum amount under paper mulching transplanting of rice considering weed control, rice growth and nitrogen efficiency.

Annual Variability in Nitrous Oxide Emission from Agricultural Field Soils (농경지 아산화질소 배출계수의 연간 변동 특성 분석)

  • Hyun, Junge;Yoo, Sin Yee;Yang, Xing Ya;Lee, Jong Eun;Yoo, Gayoung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.305-312
    • /
    • 2017
  • We aimed at investigating the difference in $N_2O$ emission factors of chemical and organic fertilizers and identifying the main factors influencing annual fluctuations in $N_2O$ emission. We conducted two-year experiments in 2016 and 2017 in an agricultural field planted with sweet potato (Ipomoea batatas). Treatments included chemical NPK fertilizer (NPK) and chicken compost application at $10\;ton\;ha^{-1}$, $20\;ton\;ha^{-1}$, and $30\;ton\;ha^{-1}$ rates (CK1, CK2 and CK3). Control was also employed with no addition. Results showed that $N_2O$ emission rates were significantly related with soil water status and soil available N contents. Significant correlation between % water filled pore space (WFPS) and $N_2O$ emission was observed only when the %WFPS was greater than 40% and during the initial stage of the experiment (<60 d). Comparison of the emission factors in 2016 and 2017 showed us that the emission factor was greater in 2016 when the %WFPS was maintained higher by 16.5% compared to that in 2017. In 2016, the emission factor of organic fertilizer was higher than that of chemical fertilizer, while in 2017, the pattern was reversed. Annual variability in $N_2O$ emission could also be originated from the available N contents remaining in soil after being taken up by plants. If we apply excessive N fertilizer, the soil would contain excess amount of N which was not uptaken by plants, leading to a huge increase in $N_2O$ emission. This case would overestimate emission factor, which was the case for the organic fertilizer in 2016. Over-fertilization should be avoided when we set up an experiment to determine $N_2O$ emission factor.

In vitro Biohydrogenation of Linolenic and Linoleic Acids by Microorganisms of Rumen Fluid (반추위액의 미생물에 의한 In vitro 상에서의 리놀렌산과 리놀산의 Biohydrogenation)

  • Lee, S.W.;Chouinard, Yvan;Van, Binh N.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.985-1000
    • /
    • 2005
  • In vitro anaerobic incubations of timothy (Phleum pretense L.) forage with bovine rumen fluid were conducted at 39℃ for 0, 3, 6, 9, 24, and 36 h in three trials to examine the biohy- drogenation of linolenic (C18:3) and linoleic acids (C18:2) and their bypass from the rumen. The objectives of the first trial was to study the effect of growth stage (stem elongation, early heading, late heading, and early flowering) and N-fertilization (0 and 120 kg N ha-1) on in vitro biohydrogenation of C18:2 and C18:3. The hydrogenable fraction, the effective disappearance and the bypass of C18:2 and C18:3 were high in timothy harvested at stem elongation, and decr- ease linearly with maturity. The N-fertilization increased the hydrogenable fraction of C18:3, the effective disappearance and the bypass of C18:2 and C18:3. However, the rate of disappearance of C18:2 and C18:3 were not affected by maturity and N-fertilization (P>0.1). In trial 2, the effect of timothy conservation method on in vitro C18:2 and C18:3 biohydrogenation was determined. Silage had the highest effective disappearance of C18:2 and C18:3, and grass hay had lowest one. The amounts of C18:2 and C18:3 biohydrogenated were higher in haylage and silage than in grass hay. Comparative to haylage timothy, the bypass of C18:3 was higher in fresh grass, wilted grass and grass hay. The bypass of C18:2 was higher in fresh grass and silage in comparison to grass hay and haylage. In trial 3, the effects of formic acid and Lactobacillus plantarum inoculum addition to timothy haylage and silage on C18:2 and C18:3 disappearance and bypass were studied. Haylage and silage additives had no effect (P>0.1) on effective disappearance and bypass of C18:2 and C18:3. The addition of formic acid increased the rate of biohydrogenation of C18:3 in haylage and silage, but it decreased the hydrogenable fraction of C18:2 in silage. The results of these three incubation trials show that the hydrogenable fraction and the bypass of C18:2 and C18:3 in timothy decreased with maturity and increased with N-fertilization. Higher amount of C18:2 and C18:3 were biohydrogenated in haylage and silage than in grass hay, and C18:3 ruminal disappearance was higher in fresh grass, wilted grass and grass hay than in haylage.

The Growth Performances and Soil Properties of Planted Zelkova serrata Trees according to Fertilization in Harvested Pinus rigida Plantation over 6 Years after Planting (조림지 시비 처리에 따른 리기다소나무 벌채지 내 식재 6년 후 느티나무 조림지 토양 및 조림목 생장 특성)

  • Yang, A-Ram;Cho, Min Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • The objective of this study was to suggest a suitable amount of fertilizer using the changes in growth performances and soil properties for improving survival and quality of Zelkova serrata trees in a harvested Pinus rigida plantation. One-year-old containerized seedlings of Z. serrata were planted with the density of 3000 seedlings $ha^{-1}$ in end of March 2011 at Gwangneung experimental forest, Pocheon. Solid compound fertilizer (N:P:K=3:4:1) were applied yearly in three amounts (control: no fertilization, F1: $180kg\;ha^{-1}$, and F2: $360kg\;ha^{-1}$) every May from 2011 to 2013. We analyzed soil properties before (2011) and after (2012 and 2017) fertilization. And we measured the root collar diameter and height of Z. serrata trees from 2011 to 2016, and then calculated H/D ratio and stem volume. Soil properties at Z. serrata plantation did not show difference according to fertilization level in every investigation year. As time passed after planting, however, concentrations of total nitrogen and available phosphorus were increased from decreased. The growth of root collar diameter, height and stem volume of Z. serrata trees at F2 plot were significantly higher those at the other plots after only 2 years of fertilization. Because Z. serrata tree demand to more nutrient during the early growing period. The survival rate of Z. serrata trees at control plot was significantly lower than that at the other plots. This might be due to Z. serrata trees at control plot had not the upper hand from competition with vegetation at the early in planting. However, the growth of height and stem volume of Z. serrata trees between F1 and F2 plots did not show difference over 6 years after planting. Consequently, we could suggest that Z. serrata trees need to F1 fertilization level for considering improving survival and quality of Z. serrata trees and economical efficiency of plantation managements after harvesting P. rigida plantation.

Effects of Combined Micronutrient(Fe, Mn, Cu, Zn, Mo and B) Application on Forage Traits in Pure and Mixed Swards of Orchardgrass and White Clover III. Changes in the contents and yields of N-compounds(crude/pure protein and soluble N-compounds) in forage plants (Orchardgrass 및 White Clover의 단파 및 혼파 재배에서 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 조합시비가 목초의 특성에 미치는 영향 III. 목초 중 질소화합물(조/순단백질 및 수용성 질소화합물)의 함량 및 수량 변화)

  • 정연규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of combined micronutrient application($T_1$;control, $T_2$; Fe, $T_3$; Fe+Mn, $T_4$; Fe+Mn+Cu, $T_5$ ; Fe+Mn+Cu+Zn, $T_6$ ; Fe+Mn+Cu+Zn+Mo, $T_7$ ; Fe+Mn+Cu+Zn+Mo+B) on forage performance of pure and mixed cultures of orchardgrass and white clover. The third part was concerned with the changes in the contents and yields of N-compounds (crude/pure protein and soluble N-compounds) in forages. The results obtained are summarized as follows: 1. The contents of N-compounds(crude/pure protein and soluble N-compounds) were generally different according to the forage species, whether it was a pure or mixed culture, and additional fertilization, especially N. In orchardgrass, these contents were relatively low at the $T_3$ and $T_6$ in both pure and mixed cultures. In white clover, these contents were relatively decreased by the $T_1$, $T_3$, and $T_6$ in mixed culture. 2. The treatments influenced relatively more on the yields of crude/pure protein than on the dry matter yields of forages, and this tendency was more significant in white clover than in orchardgrass. 3. In white clover, the great differences in the yields of crude protein by the treatments occurred especially in mixed culture and at 5th cut without no additional fertilization. In white clover, the positive effects of optimum treatments on the yields of crude protein seemed to be decreased by the additional fertilization, especially N. In mixed culture, the favorable growth of white clover by the optimum treatments tended to be positively related to the favorable contents and yields of N-compounds. The changes in the yields of pure protein were similar to the tendency of crude protein

The Study on the Effects of Various N.P.K. Fertilization Levels on Hop Yield (NPK의 시비수준이 호프수량에 미치는 영향에 관한 연구)

  • 임웅규
    • Journal of Plant Biology
    • /
    • v.19 no.2
    • /
    • pp.37-40
    • /
    • 1976
  • The experiment designed to obtain information relative to the favourable levels to apply N.P.K fertilizer was conducted at the hop garden of College of Agriculture, S.N.U. in 1975. The varieties used were 1-year-old Cascade, Hallertau and Shinshuwase. The design of the experiment was a split plot design with 3 replications. Yields were recorded as fresh weight of harvested cones in gram per split plot. The results obtained from the experiment were as follows: 1. The results from analysis of the data for 3 varieties indicated that significant increase in yield were found due to the application of 46g N, 20g P2O5 and 60kg K2O per plant, although higher level thn the above caused a remarkable reduction of yield. 2. The individual fresh weight of harvested cones was significantly increased with application of nitrogen, phosphorus and potash, regardless of fertilizer levels. 3. Analysis of variance for yields showed that there were no significant interaction between fertilizer level and variety, i.e., all varieties used might require the same fertilizer level.

  • PDF

Evaluation of the Amount of Nitrogen Top Dressing Based on Ground-based Remote Sensing for Leaf Perilla (Perilla frutescens) under the Polytunnel House

  • Kang, Seong-Soo;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.598-607
    • /
    • 2016
  • This study was conducted to evaluate the amount of nitrogen (N) top dressing based on the normalized difference vegetation indices (NDVI) by ground based sensors for leaf perilla under the polyethylene house. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization with 3 and 4 replications in Gumsan-gun and Milyang-si field, respectively. Dry weight (DW), concentration of N, and amount of N uptake by leaf perilla as well as NDVIs from sensors were measured monthly. Difference of growth characteristics among treatments in Gumsan field was wider than Milyang. SPAD-502 chlorophyll meter reading explained 43.4% of the variability in N content of leaves in Gumsan field at $150^{th}$ day after seedling (DAS) and 45.9% in Milyang at $239^{th}$ DAS. Indexes of red sensor (RNDVI) and amber sensor (ANDVI) at $172^{th}$ day after seedling (DAS) in Gumsan explained 50% and 57% of the variability in N content of leaves. RNDVI and ANDVI at $31^{th}$ DAS in Milyang explained 60% and 65% of the variability in DW of leaves. Based on the relationship between ANDVI and N application rate, ANDVI at $172^{th}$ DAS in Gumsan explained 57% of the variability in N application rate but non significant relationship in Milyang field. Average sufficiency index (SI) calculated from ratio of each measurement index per maximum index of ANDVI at $172^{th}$ DAS in Gumsan explained 73% of the variability in N application rate. Although the relationship between NDVIs and growth characteristics was various upon growing season, SI by NDVIs of ground based remote sensors at top dressing season was thought to be useful index for recommendation of N top dressing rate of leaf perilla.

The effect of liquid swine manure application rate on the production of green manure crops in paddy

  • Choi, Jong-Seo;Kim, Sook-Jin;Kang, Shingu;Park, Jeong Hwa;Yoon, Young-Hwan;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.209-209
    • /
    • 2017
  • The application of liquid swine manure to soil has been commonly reported to increase crop productivity by improving plant nutrient availability. This study was conducted to investigate the effect of liquid swine manure (LSM) application on yield of green manure crops in paddy. Three different application rates of LSM equivalent to 25%, 50%, and 75% of standard fertilization rate of P were applied to the paddy field after rice harvest, and two cover crops, hairy vetch (Vicia villosa Roth) and barley (Hordeum vulgare L.), were subsequently mix-seeded and cultivated. Plant height of barley was 7% higher in LSM P25% and LSM P50% compared to control treatment (no LSM application), while no significant difference was observed between LSM P75% and control. However, there were no significant differences in plant height of hairy vetch among treatments. Dry matter (DM) yield of green manure increased with LSM application rate, reaching a maximum at LSM P50% (38 and 17% yield increase over control for hairy vetch and barley, respectively), but it decreased at LSM P75% rate. Nitrogen production by green manure crops was the highest in LSM P50% treatment, where the amount of produced N was 57% higher than the optimum N fertilization level for rice ($90kg\;N\;ha^{-1}$). Excess green manure biomass above an optimum level can be removed and utilized either for incorporation into nearby cropland or for sale as fresh forage. Therefore, it is concluded that the application rate of LSM P50% is recommendable for the maximum biomass and nitrogen production from green manure crops in paddy.

  • PDF

A Study on the Estimation of Water Pollutants Reduction Ratio in Livestock Manure Fertilization (가축분뇨 자원화 처리시 수질오염물질 삭감율 산정 연구)

  • Oa, Seong Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.722-727
    • /
    • 2017
  • Livestock manure is known to be the main cause of non-point pollution in agricultural areas. The pollutant reduction ratio of livestock manure recycling to fertilizers was measured in order to analyze the effect on the water quality of the Total Maximum Daily Load (TMDL) system in Korea. The reduction ratio has been applied by theoretical consideration without a survey, and there is no value for Total Organic Carbon (TOC) newly introducing any organic items. The reduction ratio of each pollutant from this study was revealed as follows: TOC, BOD, T-N and T-P were 0.34, 0.60, 0.37, and 0.42 for individual farm and 0.38, 0.61, 0.45 and 0.44 for entrustment facilities, respectively. The reduction ratio of individual farm was surveyed as TOC 0.63, BOD 0.62, T-N 0.42 and T-P 0.32 for liquid fertilizer, and TOC 0.30, BOD 0.64, T-N 0.40 and T-P 0.48 for compost. The total reduction ratio was derived by multiplying the ratio for liquid fertilizer and compost by the respective load. Compared to the pollutant reduction ratio of the individual farm with entrustment facilities marking the higher in liquid fertilizer and the lower in compost. Through this study, we found the difference of pollutant reduction ratio between a livestock manure recycling process and facilities. Although phosphorus is known as a preservative matter, the treatment efficiency of T-P is analyzed to decrease by chemical precipitation.

Efficacy of oxytocin antagonist infusion in improving in vitro fertilization outcomes on the day of embryo transfer: A meta-analysis

  • Kim, Seul Ki;Han, E-Jung;Kim, Sun Mie;Lee, Jung Ryeol;Jee, Byung Chul;Suh, Chang Suk;Kim, Seok Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.4
    • /
    • pp.233-239
    • /
    • 2016
  • Objective: Uterine contraction induced by the embryo transfer (ET) process has an adverse effect on embryo implantation. The aim of this study was to determine the effect of oxytocin antagonist supplementation on the day of ET on in vitro fertilization outcomes via a meta-analysis. Methods: We performed a meta-analysis of randomized controlled trials (RCTs). Four online databases (Embase, Medline, PubMed, and Cochrane Library) were searched through May 2015 for RCTs that investigated oxytocin antagonist supplementation on the day of ET. Studies were selected according to predefined inclusion criteria and meta-analyzed using RevMan 5.3. Only RCTs were included in this study. The main outcome measures were the clinical pregnancy rate, the implantation rate, and the miscarriage rate. Results: A total of 123 studies were reviewed and assessed for eligibility. Three RCTs, which included 1,020 patients, met the selection criteria. The implantation rate was significantly better in patients who underwent oxytocin antagonist infusion (19.8%) than in the control group (11.3%) (n = 681; odds ratio [OR], 1.92; 95% confidence interval [CI], 1.25-2.96). No significant difference was found between the two groups in the clinical pregnancy rate (n = 1,020; OR, 1.57; 95% CI, 0.92-2.67) or the miscarriage rate (n = 456; OR, 0.76; 95% CI, 0.44-1.33). Conclusion: The results of this meta-analysis of the currently available literature suggest that the administration of an oxytocin antagonist on the day of ET improves the implantation rate but not the clinical pregnancy rate or miscarriage rate. Additional, large-scale, prospective, randomized studies are necessary to confirm these findings.