• Title/Summary/Keyword: N deposition

Search Result 2,147, Processing Time 0.04 seconds

A study on the Deposition Characteristics of AIN Thin Films by using RF Sputtering (RF 스퍼터링을 이용한 AIN 박막의 증착특성에 관한 연구)

  • 이민건;장동훈;강성준;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1049-1052
    • /
    • 2003
  • This study shows the change of the structural characteristic of AIN thin film deposition with the change of the deposition conditions such as Ar/$N_2$ gas ratio, operating pressure in chamber, and the distance between substrate and target in RF Magnetron Sputtering. The orientation and surface roughness of AIN thin film are studied by using XRD and AFM and the thickness is measured by using STYLUS PROFILER. While we can not identify the orientation of the thin film deposited in Ar only, we can obtain the (100) orientation of the thin film with the addition of $N_2$ to Ar. Especially the thin film deposited at 10% of Ar/$N_2$ gas ratio appears to be the most (100) oriented. The (100) orientation of thin film becomes weaker as the operating pressure becomes higher. The further distance between substrate and target is stronger the (100) orientation of the thin film is. The (100) orientation becomes weaker and (002) orientation starts to appear as the distance is shorter.

  • PDF

Influence of Parameters on Adhesion Strength on TiN Film by using R.F. Plasma Assisted Chemical Vapor Deposition (PACVD로 증착된 TiN 박막의 밀착성에 관하여)

  • Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1990
  • In this study, TiN film was deposited onto steel by R.F.-PACVD in order to investigate the influence of parameters on the adhesion strength between film and substrate. Experimental results showed that adhesion strength by SAT is different from by optical microscopy. Adhesion strength is increased when the deposition temperature increases and is influenced by R.F. power and electrode distance. Especially heat treatment on the substrate has influenced over the adhesion strength, so it showed the 22 Newtons in adhesion strength by SAT and adhesion strength is decreased when deposition thickeness is thick and hardness is high. Also if the film is thick and high hardness simultaneous, the film was delaminated seriously.

  • PDF

Red-shift of the photoluminescence peak of N-doped ZnO phosphors

  • Kim, Jun-Kwan;Lim, Jung-Wook;Kim, Hyun-Tak;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.895-897
    • /
    • 2008
  • ZnO films were fabricated using rf-magnetron sputter deposition process with different $N_2$ ambient. N-content in N-doped ZnO films was less than 1%. The wavelength of the highest intensity PL peak of N-doped ZnO was shifted to higher wavelength with increasing $N_2$ flow rate in the deposition ambient. These results indicated that the optical property of ZnO was significantly affected by the defect level created by doping with a very small amount of N.

  • PDF

Green and Blue Light Emitting InN/GaN Quantum Wells with Nanosize Structures Grown by Metalorganic Chemical Vapor Deposition

  • Kim, Je-Won;Lee, Kyu-Han
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.127-130
    • /
    • 2005
  • The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy and electroluminescence measurements. As the quantum well growth time was changed, the wavelength was varied from 451 to 531 nm. In the varied current conditions, the blue LED with the InN MQW structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN MQW structures do not show the color temperature changes with the variations of applied currents.

Effects of deposition conditions on properties of AlN thin films and characterization of AlN SAW devices (다양한 증착변수에 따른 AlN 박막의 물성 및 SAW 소자의 특성 분석)

  • Jung, Jun-Phil;Lee, Myung-Ho;Lee, Jin-Bock;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1479-1481
    • /
    • 2002
  • AlN thin films were deposited on Si(100) and $SiO_2$/Si substrates using R.F. magnetron sputtering system. The effect of various deposition conditions on the crystal orientation of AlN films was investigated to obtain a highly (002)-oriented films. SAW filters were fabricated using AlN films with various thicknesses and their frequency response characterizations were measured. Experimental results showed that the (002)-orientation and surface roughness of AlN films played a crucial role of determining the frequency response of AlN SAW devices.

  • PDF

A Study on the mechanism of $SiO_2$ film deposition by Laser CVD (레이져 CVD에 의한 $SiO_2$막의 형성기구 모델링에 관한 연구)

  • Ryoo, Ji-Ho;So, Hwang-Young;Kim, Young-Hoon;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1149-1151
    • /
    • 1995
  • In order to examine the deposition mechanism for $SiO_2$ by ArF(193nm) excimer Laser using $Si_2H_6$ and $N_2O$ gas mixture, deposition rate and refractive index were measured and creative modeling on film deposition was established by suggesting now precursor and film growing mechanism.

  • PDF

Deposition properties of $Al_{2}O_{3}$ thin films by LP-MOCVD (LP-MOCVD로 제조한 알루미나 박막의 증착 특성)

  • 김종국;박병옥;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.309-317
    • /
    • 1996
  • Al2O3 thin films were deposited on Si-wafer (100) using organo-aluminum compounds at low pressure by chemical vapor deposition (CVD) method. The vapor of the organo-metallic precursor was carried by pure N2 gas. The deposition rate increased and then saturated as Tsub increased with increasing the AIP flow rate. The main contamination didn't found in deposited films except carbon. The H-O(H2O) IR absorption band decreased in intensity as the deposition temperature increased, and completely disappeared through annealing.

  • PDF

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Properties of Silicon Nitride Deposited by RF-PECVD for C-Si solar cell (결정질 실리콘 태양전지를 위한 실리콘 질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Song, Hee-Eun;Kang, Min-Gu;Kang, Gi-Hwan;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • Silicon nitride($SiN_x:H$) deposited by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) is commonly used for anti-reflection coating and passivation in crystalline silicon solar cell fabrication. In this paper, characteristics of the deposited silicon nitride was studied with change of working pressure, deposition temperature, gas ratio of $NH_3$ and $SiH_4$, and RF power during deposition. The deposition rate, refractive index and effective lifetime were analyzed. The (100) p-type silicon wafers with one-side polished, $660-690{\mu}m$, and resistivity $1-10{\Omega}{\cdot}cm$ were used. As a result, when the working pressure increased, the deposition rate of SiNx was increased while the effective life time for the $SiN_x$-deposited wafer was decreased. The result regarding deposition temperature, gas ratio and RF power changes would be explained in detail below. In this paper, the optimized condition in silicon nitride deposition for silicon solar cell was obtained as 1.0 Torr for the working pressure, $400^{\circ}C$ for deposition temperature, 500 W for RF power and 0.88 for $NH_3/SiH_4$ gas ratio. The silicon nitride layer deposited in this condition showed the effective life time of > $1400{\mu}s$ and the surface recombination rate of 25 cm/s. The crystalline silicon solar cell fabricated with this SiNx coating showed 18.1% conversion efficiency.