• Title/Summary/Keyword: N and S deposition

Search Result 564, Processing Time 0.035 seconds

Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.196-199
    • /
    • 2012
  • CdS thin film was prepared on glass substrate by chemical bath deposition in an alkaline solution. The optical properties of CdS thin film were investigated using spectroscopic ellipsometry. The real (${\varepsilon}_1$) and imaginary (${\varepsilon}_2$) parts of the complex dielectric function ${\varepsilon}(E)={\varepsilon}_1(E)+i{\varepsilon}_2(E)$, the refractive index n(E), and the extinction coefficient k(E) of CdS thin film were obtained from spectroscopic ellipsometry. The normal-incidence reflectivity R(E) and absorption coefficient ${\alpha}(E)$ of CdS thin film were obtained using the refractive index and extinction coefficient. The critical points $E_0$ and $E_1$ of CdS thin film were shown in spectra of the dielectric function and optical constants of refractive index, extinction coefficient, normal-incidence reflectivity, and absorption coefficient. The dispersion of refractive index was analyzed by the Wemple-DiDomenico single-oscillator model.

Electrical Conductivity Modulation in TaNx Films Grown by Plasma Enhanced Atomic Layer Deposition (플라즈마 강화 원자층 증착법에 의한 TaNx 박막의 전기 전도도 조절)

  • Ryu, Sung Yeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.241-246
    • /
    • 2018
  • $TaN_x$ film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using $NH_3$ as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using $N_2+H_2$ mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown $TaN_x$ film with $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. For a comparison, reactive sputter-grown $TaN_x$ film with $N_2$ is also studied. The results reveal that ALD-grown $TaN_x$ films with $NH_3$ and $H_2$ include a metallic Ta-N bond, which results in the film's higher conductivity. Meanwhile, ALD-grown $TaN_x$ film with a $N_2+H_2$ mixed gas or sputtergrown $TaN_x$ film with $N_2$ gas mainly contains a semiconducting $Ta_3N_5$ bond. Such a different portion of Ta-N and $Ta_3N_5$ bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.

Microstrcture and Mechanical Properties of HfN Films Deposited by dc and Inductively Coupled Plasma Assisted Magnetron Sputtering (직류 및 유도결합 플라즈마 마그네트론 스퍼터링법으로 제조된 HfN 코팅막의 미세구조 및 기계적 물성연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.67-71
    • /
    • 2020
  • For deposition technology using plasma, it plays an important role in improving film deposited with high ionization rate through high density plasma. Various deposition methods such as high-power impulse magnetron sputtering and ion-beam sputtering have been developed for physical vapor deposition technology and are still being studied. In this study, it is intended to control plasma using inductive coupled plasma (ICP) antennas and use properties to improve the properties of Hafnium nitride (HfN) films using ICP assisted magnetron sputtering (ICPMS). HfN film deposited using ICPMS showed a finer grain sizes, denser microstructure and better mechanical properties as ICP power increases. The best mechanical properties such as nanoindentation hardness of 47 GPa and Young's modulus of 401 GPa was obtained from HfN film deposited using ICPMS at ICP power of 200 W.

Thin Film Passivation of Organic Light Emitting Diodes by Catalyzer Enhanced Chemical Vapor Deposition (CECVD) (촉매반응 화학기상증착법을 이용한 유기발광소자의 박막 봉지)

  • Kim, Han-Ki;Moon, J.M.;Bae, J.H.;Jeong, S.W.;Kim, M.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.71-72
    • /
    • 2006
  • We report on plasma damage free chemical vapor deposition technique for the thin film passivation of organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays using catalyzer enhanced chemical vapor deposition (CECVD). Specially designed CECVD system has a ladder-shaped tungsten catalyzer and movable electrostatic chuck for low temperature deposition process. The top emitting OLED with thin film $SiN_x$ passivation layer shows electrical and optical characteristics comparable to those of the OLED with glass encapsulation. This indicates that the CECVD technique is a promising candidate to grow high-quality thin film passivation layer on OLED, OTFT, and flexible displays.

  • PDF

Magnetic Hardening of Nano-thick $Sm_2Fe_{17}N_x$ Films Grown by Pulsed Laser Deposition

  • Yang, Choong Jin;Wu, Jianmin
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.124-129
    • /
    • 2000
  • $Sm_2Fe_{17}N_x$ film magnets were prepared using a $Sm_2Fe_{17}$ target in a $N_2$ gas atmosphere using a Nd-YAG pulsed laser ablation technique. The effect of nitrogen pressure, deposition temperature, pulse time and film thickness on the structure and magnetic properties of $Sm_2Fe_{17}N_x$ film were studied. Increasing the nitrogen pressure up to 5 atm led to the formation of complete $Sm_2Fe_{17}N_x$ compound. Optimized magnetic properties with the nitrogenation temperature in the range 500-53$0^{\circ}C$ could be obtained by extending the nitrogenation time up to 4 hours. Relatively low coercivities of 400~600 Oe were found in $Sm_2Fe_{17}N_x$films 50~100 m thick, while a $4\piM_s$ of 10$\sim$12 kG could be achieved. In-plane anisotropy, which was the basic goal in this study, was achieved by controlling the nitrogenation parameters.

  • PDF

Characterization of Nitrogen-Doped $TiO_2$ Thin Films Prepared by Metalorganic Chemical Vapor Deposition (유기금속 화학 기상증착법으로 실리콘 기판위에 증착된 질소치환 $TiO_2$ 박막의 특성분석)

  • 이동헌;조용수;이월인;이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1577-1587
    • /
    • 1994
  • TiO2 thin films with the substitution of oxygen with nitrogen were deposited on silicon substrate by metalorganic chemical vapor deposition (MOCVD) using Ti(OCH(CH3)2)4 (titanium tetraisopropoxide, TTIP) and N2O as source materials. X-ray diffraction (XRD) results indicated that the crystal structure of the deposited thin films was anatase TiO2 with only (101) plane observed at the deposition temperatures of 36$0^{\circ}C$ and 38$0^{\circ}C$, and with (101) and (200) plane at above 40$0^{\circ}C$. Raman spectroscopic results indicated that the crystal structure was anatase TiO2 in accordance with the XRD results without any rutile, fcc TiN, or hcp TiN structure. No fundamental difference was observed with temperature increase, but the peak intensity at 194.5 cm-1 increased with strong intensity at 143.0 cm-1 for all samples. The crystalline size of the films varied from 49.2 nm to 63.9 nm with increasing temperature as determined by slow-scan XRD experiments. The refractive index of the films increased from 2.40 to 2.55 as temperature increased. X-ray photoelectron spectroscopy (XPS) study showed only Ti 2s, Ti 2p, C 1s, O 1s and O 2s peaks at the surface of the film. The composition of the surface was estimated to be TiO1.98 from the quatitative analysis. In the bulk of the film Ti 2s, Ti 2p, O 1s, O 2s, N 1s and N 2s were detected, and Ti-N bonding was observed due to the substitution of oxygen with nitrogen. A satellite structure was observed in the Ti 2p due to the Ti-N bonding, and the composition of titanium nitride was determined to be about TiN1.0 from the position of the binding energy of Ti-N 2p3/2 and the quatitative analysis. The spectrum of Ti 2p energy level could be the sum of a 4, 5, or 6 Gaussian curve reconstruction, and the case of the sum of the 6 Gaussian curve reconstruction was physically most meaningful. From the results of Auger electron spectroscopy (AES), it was known that the composition was not varied significantly throughout the whole thickness of the film, and silicon oxide was not observed at the interface between the film and the substrate. The composition of the film was possible (TiO2)1-x.(TiN)x or TiO2-2xNx and in this experimental condition x was found to be about 0.21-0.16.

  • PDF

Enhanced Control of OLED Deposition Processes by OVPD(R)

  • Schwambera, M.;Meyer, N.;Keiper, D.;Heuken, M.;Hartmann, S.;Kowalsky, W.;Farahzadi, A.;Niyamakom, P.;Beigmohamadi, M.;Wuttig, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.336-339
    • /
    • 2007
  • The enhanced control of OLED deposition processes by Organic Vapor Phase Deposition $(OVPD^{(R)})$ is discussed. $OVPD^{(R)}$ opens a wide space of process control parameters. It allows the accurate and individual control of deposition layer properties like morphology and precise mixing of multi component layers (co-deposition) in comparison to conventional deposition manufacturing processes like e. g. VTE (vacuum thermal evaporation).

  • PDF

Effects of epilayer growth temperature on properties of undoped GaN epilayer on sapphire substrate by two-step MOCVD (2단계 MOCVD법에 의해 사파이어 기판 위 성장된 undoped GaN 에피박막의 특성에 미치는 고온성장 온도변화의 영향)

  • Chang K.;Kwon M. S.;Cho S. I.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.222-228
    • /
    • 2005
  • Undoped GaN epitaxial layer was grown on c-plane sapphire substrate by a two-step growth with metalorganic chemical vapor deposition(MOCVD). We have investigated the effects of the variation of final growth temperature on surface morphology, roughness, crystal quality, optical property, and electrical property In a horizontal MOCVD reactor, the film was grown at 300 Tow low-pressure with a fixed nucleation temperature of $500^{\circ}C$, varing the final growth temperature from $850\~1050^{\circ}C$ . The undoped GaN epilayers were characterized by atomic force microscopy, high-resolution x-ray diffractometer, photoluminescence, and Hall effect measurement.

Measurement of Particle Deposition Velocity toward a Horizontal Semiconductor Wafer Using a Wafer Surface Scanner (Wafer Surface Scanner를 이용한 반도체 웨이퍼상의 입자 침착속도의 측정)

  • Bae, G.N.;Park, S.O.;Lee, C.S.;Myong, H.K.;Shin, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.130-140
    • /
    • 1993
  • Average particle deposition velocity toward a horizontal semiconductor wafer in vertical airflow is measured by a wafer surface scanner(PMS SAS-3600). Use of wafer surface scanner requires very short exposure time normally ranging from 10 to 30 minutes, and hence makes repetition of experiment much easier. Polystyrene latex (PSL) spheres of diameter between 0.2 and $1.0{\mu}m$ are used. The present range of particle sizes is very important in controlling particle deposition on a wafer surface in industrial applications. For the present experiment, convection, diffusion, and sedimentation comprise important agents for deposition mechanisms. To investigate confidence interval of experimental data, mean and standard deviation of average deposition velocities are obtained from more than ten data set for each PSL sphere size. It is found that the distribution of mean of average deposition velocities from the measurement agrees well with the predictions of Liu and Ahn(1987) and Emi et al.(1989).

  • PDF