• 제목/요약/키워드: N and P Removal

검색결과 999건 처리시간 0.023초

광합성 박테리아 및 담체를 이용한 하천의 저농도 질소, 인 처리 시스템 개발 (The Development of Treatment System for Removing the Low Concentrated Nitrogen and Phosphorus Using Phototrophic Bacteria and Media)

  • 김선정;이상섭
    • 미생물학회지
    • /
    • 제46권1호
    • /
    • pp.27-32
    • /
    • 2010
  • 저농도 유기물, 질소, 인 제거를 위하여 독립영양 미생물인 광합성 박테리아를 이용한 회분식 실험 결과 초기값 $COD_{Cr}$ 37.3 mg/L, $NH_3$-N 4.0 mg/L, $PO_4^{3-}$-P 1.0 mg/L (C:N:P=100:10:1) 일 때 각각 87.4%, 46.3%, 79.7% 제거효율을 보였다. 혼합 광합성 박테리아, 세라믹 담체 및 담체 KSP01을 적용한 폭기식 반응기 실험 결과, 평균 유기물 72.7%, 암모니아성 질소 79.2%를 제거하였으며, pH 조절로 인산염 인을 최대 92.6%까지 제거할 수 있었다. 반응기 내 다양한 폭기 조건에서 암모니아성질소 제거를 확인한 결과, 1, 2 반응조에 10.2 L/min로 공기를 주입하였을 때 98.5%로 높은 제거효율을 보여주었다. 또한 하천수 적용시 암모니아성 질소 82.8%의 높은 제거효율을 확인하였다. 본 연구를 통하여 개발된 정화 시스템의 현장 적용시 저농도 질소, 인의 높은 제거를 보일 것으로 사료된다.

수생식물을 이용한 담수 순환여과식 양식용수내의 무기영양염 처리 효율 (Inorganic Nutrient Removal Efficiency of Aquatic Plants from Recirculating Aquaculture System)

  • 마진석;오승용;조재윤
    • 한국양식학회지
    • /
    • 제16권3호
    • /
    • pp.171-178
    • /
    • 2003
  • Inorganic nutrients such as nitrogen and phosphate compounds accumulate in recirculating aquaculture systems. These nutrients must be removed from the system before they affect pH and fish health. For this purpose, aquatic plants are a simple and inexpensive method of removal. There are four commonly used aquatic plants: Eichhornia crassipes (water hyacinth), Pistia stratiotes (water lettuce), Hygrophila angustifolia, and Hydrocotyle leucocephala in freshwater recirculating aquaculture systems in Korea, but their efficiencies are not known. Therefore, removal efficiencies of inorganic nutrients from a freshwater recirculating aquaculture water with four commonly used aquatic plants were tested. Removing efficiencies of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N of the plants in 210 L aquaria for 48-hour period were tested. The removing efficiencies of TAN, N $O_3$$^{[-10]}$ -N, and P $O_4$$^{3-}$-P of the two most effective plants, water hyacinth and water lettuce, were also tested in 690 L (surface area of 1.55 $m^2$) tanks under 2 different initial stocking densities, 4 kg and 6 kg, for 22 days. Proximate analysis major nutrients and N and P contents of the all plants were analyzed for calculating net removal weight of N and P by the plants. Water lettuce was the most effective for removing TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N from the water for 48-hour period tested followed by water hyacinth and Hygrophila angustifolia. Water lettuce reduced TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N concentration from 2.3 mg/L, 0.197 mg/L, and 21.4 mg/L to 0.4 mg/L, 0.024 mg/L and 17.4 mg/L, respectively while water hyacinth reduced them down to 0.6 mg/L, 0.029 mg/L and 17.9 mg/L, respectively. The concentrations of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N in Hydrocotyle leucocephala group were rather increased up to 3.7 mg/L, 5.7 mg/L and 48.2 mg/L, respectively. This is because the creeping stem of Hydrocotyle leucocephala had to be cut to meet stocking weight resulting in decaying of the stem in the aquaria during experiment. The net growth in weight of water hycinth and water lettuce of 4 kg each in the 1.55 $m^2$ tanks for 22 days were 9.768 kg and 10.803 kg respectively, and those at initial weight of 6 kg each were 8.393 kg and 9.433 kg, respectively. The reason of lower net growth in the later group was restricted growth space. Nitrogen and phosphorus contents in water hyacinth were 2.89% and 0.27%, and those in water lettuce were 3.87% and 0.36%, respectively. Average quantities of removed N and P from 1.55 $m^2$ tanks by water hyacinth for 22 days were 18.9 g and 1.75 g, while those by water lettuce were 36.8 g and 3.5 g, respectively. Therefore water lettuce showed much higher efficiencies for removing both N and P from recirculating aquaculture water than water hyacinth.

SBR을 이용한 소규모 오수처리시설에 관한 연구 (A study on the small sewerage system using SBR process)

  • 박민정;김동석
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.427-437
    • /
    • 2003
  • An evaluation of the application of SBR and biofilm en small sewerage system was conducted. A newly developed small sewerage system, using SBR, was successfully applied to the nutrient treatment using municipal wastewater. The system was consisted of 6 compartments. Two systems, with SBR (A type) or without SBR (B type), were compared by several parameters (COD, SS, T-N, NH$_4$$\^$+/-N, NO$_3$$\^$-/-N, NO$_2$$\^$ -/-N, alkalinity, pH, DO) in all experimental periods. Also, the time variation of several parameters (DO, pH, NH$_4$$\^$+/-N, NO$_3$$\^$-/-N NO$_2$$\^$-/-N) was examined in a SBR applied sewerage system. T-N removal efficiency of B type Was higher than that Of A type by the effect of nitrification and denitrification even though the COD removal efficiencies were similar. In aeration stage, the pH was decreased from 6.4 to 6.3 within 1 h and increased to 6.65 at the end of aerobic stage, and pH was decreased to 6.2 in non-aeration stage, and these phenomena were explained. The effects of nitrification and denitrification were compared in A type and B type sewerage system, and the typical nitrification and denitrification were observed in B type sewerage system.

Mixotrophic 미세조류를 이용한 유기물 및 영양염류 제거에 미치는 pH 및 폭기의 영향 (Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae)

  • 김선진;이윤희;황선진
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.69-76
    • /
    • 2013
  • Specific growth rate and removal rate of nitrogen and phosphorus of Chlorella sorokiniana, Chlorella vulgaris, Senedesmus dimorphus those are able to metabolite mixotrophically and have high nitrogen and phosphorus removal capacity were examined. Based on the results, one microalgae was selected and conducted experiments to identify the operating factors such as pH and aeration rate. The specific growth rate and phosphorus removal rate of C. sorokiniana significantly presented as $0.29day^{-1}$ and 1.65 mg-P/L/day, while the nitrogen removal rate was high as 12.7 mg-N/L with C. vulgaris. C. sorokiniana was chosen for appropriate microalgae to applying for wastewater treatment system and was cultured in pH ranged 3 to 11. High specific growth rate and removal rate of nitrogen and phosphorus were shown at pH 7 as $0.71day^{-1}$, 7.61 mg-N/L/day, and 1.24 mg-P/L/day, respectively. The specific growth rate examined with aeration rate between 0 and 2 vvm (vol/vol-min) highly presented as $1.2day^{-1}$ with 1.5 ~ 2 vvm, while the nitrogen removal rate was elevated with 0.5 vvm as 9.43 mg-N/L/day.

하천 내 수질 개선을 위한 박층류 하도의 적용 및 평가 (Application and Evaluation of the Sheet Flow Channel for Water Quality Improvement in the Stream)

  • 이두한;김명환;구정은;김원
    • Ecology and Resilient Infrastructure
    • /
    • 제6권4호
    • /
    • pp.208-216
    • /
    • 2019
  • 본 연구는 하천 내의 자연형 수질정화기법으로 박층류 하도의 설계방법과 효율에 대해서 연구하였다. 박층류 하도의 설계인자를 고려하여 설계를 수행하고 오산천 고수부지에 시험구간을 조성하여 모니터링을 수행하였다. 수위, 유속, 유량, T-N, T-P, NO3-N 등에 대한 모니터링 결과를 이용하여 제거효율을 평가하고 설계식을 제시하였다. T-N, T-P, NO3-N 등의 제거효율은 10 - 20%로 나타났으며 체류시간과 일정한 관계를 나타내고 있다. 또한 조류 형성과 유속 간의 관계를 통해 최소 유속 조건을 제시하였다. 본 연구에서 제시된 체류시간과 제거효율의 관계식은 차집수로 설계와 운영에 유용할 것으로 기대된다.

변형 연속회분식 반응기를 이용한 오수의 고도처리 (Advanced Sewage Treatment by the Modified SBR(Sequencing Batch Reactor) Process)

  • 김병군;서인석;홍성택;정위득
    • 환경위생공학
    • /
    • 제17권3호
    • /
    • pp.46-51
    • /
    • 2002
  • This study was performed to treat a sewage at the upper stream of dam using modified sequencing batch reactor, During the operating period, average $COD_{cr}$, removal efficiency was about 85% but average T-N and ${PO_4}^{3-}-P$ removal efficiencies were 43% and 30% respectively. Because the organic matter was very low compared with nitrogen and phosphorous in influent($BOD_{5}/{NH_4}^{+}-N{\;}={\;}2,{\;}BOD_{5}/{PO_4}^{3-}-P{\;}={\;}15.6$), nitrogen and phosphorus removal efficiency was relatively low. Average nitrogen removal efficiency was 50 % at $10^{\circ}C$ or above and it was 36 % at $10^{\circ}C$ or below. As reactor was located in outdoor without any thermostat, temperature decreased at least $2.4^{\circ}C$ in the winter season. Therefore, if we would apply this modified sequencing batch reactor to sewage which concentration of organic matter was very low compared with nitrogen and phosphorous, we have to addition of external carbon and installation of any thermostat.

사상성 조류매트 산화지의 수질정화효율 (Pollutant Removal Efficiency in Oxidation Pond with Filamentous Algae Mat)

  • 최선화;장정렬;안열
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.655-660
    • /
    • 2005
  • This study was carried out to evaluate of water purification in oxidation pond with filamentous algae mat. It is the water treatment process in the small rural streams to remove the organic materials and nutrients. We used the filamentous algae mat(FAM) which selectively predominate the filamentous algae to prevent the additional contamination by algae outflow. The removal efficiencies of COD, SS, T-N and T-P in Oxidation Pond with Filamentous Algae Mat were -2.5%, 84.7%, 63.9% and 89.2%, respectively. The removal efficiencies of T-N and T-P which are nutrients index were high. Results of this study would help us to determine the possibility of using the water treatment on the contaminated small rural streams.

  • PDF

제지공정 페슬러지처리용 지렁이 분변토의 담체화 기술 (Immobilization of Earthworm Casts to Treat the Waste Sludge Produced from Pulp & Paper Plants as a Biocarrier)

  • 조욱상;이은영;조남혁
    • 청정기술
    • /
    • 제8권3호
    • /
    • pp.167-172
    • /
    • 2002
  • 제지슬러지를 지렁이에게 급이하여 생산된 분변토의 하 폐수 고도처리용 담체로의 적용 가능성에 대하여 알아보았다. 먼저 폐수를 일반 활성슬러지법으로 운전한 후 이를 담체와 유입수의 조건을 달리하여 영양 염류의 제거 효율을 알아보았다. 담체를 적용하기 전엔 T-P및 T-N의 제거율은 각각 평균 52%와 31%정도로 나타났다. Pellet 형 및 pack 형으로 제조된 두 종류의 분변토 담체를 적용한 후에는 T-P의 경우는 제거효율이 약 1.3~1.4배 증가하였으며 T-N의 제거효율은 약 1.9 ~ 2.0 배 증가하여 상당히 뛰어난 영양염류의 제거 효율을 보여주었다. 또한, T-N 및 T-P의 제거효율은 담체의 종류에는 큰 영향을 받지 않아 다양한 미생물이 서식하는 분변토는 성형 방법에 관계없이 뛰어난 성능을 보임을 알 수 있었다. 반면, 담체 적용 전후의 BOD 및 COD의 제거 효율은 큰 차이가 없었다. 본 연구를 통하여 분변토로 제조된 담체는 하 폐수 고도처리용 담체로의 활용 가능성이 매우 높은 것으로 사료된다.

  • PDF

Synthesis of Poly(N-methylol Methacrylamide/Vinyl Sulfonic Acid) Hydrogels for Heavy Metal Ion Removal

  • Yakar, Arzu
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.3063-3070
    • /
    • 2014
  • In this study, poly(N-methylol methacrylamide) (NMMAAm) and poly(N-methylol methacrylamide/vinyl sulphonic acid) (NMMAAm-VSA) hydrogels were synthesized by $^{60}Co-{\gamma}$ ray irradiation at an ambient temperature. The graphs belonging to the gelation percent- percent-dose and swelling curves were drawn by using data which were obtained from water and different pH solutions. Characterization of hydrogels was performed by FTIR and DSC-TGA analysis. Heavy metal ion ($Ni^{2+}$, $Co^{2+}$) removal capacities of hydrogels were investigated in aqueous solutions, which had different concentrations (100-1500 mg/L). In metal ion removal studies, pH value of aqueous medium was kept constant at 5.0. Maximum metal ion removal values were obtained for NMMAAm-VSA (1:3 mole ratio) hydrogels. Metal ion removal capacities of NMMAAm-VSA (1:3 mole ratio) hydrogels were found as 82 mg/g and 98 mg/g for $Ni^{2+}$ and $Co^{2+}$ ions, respectively.

혐기-호기 활성슬러지법에 의한 유량변동이 있는 폐수의 N-P 동시 제거에 관한 연구(I) (Simultaneous N-P Removal of Wastewater with Flow Variation by Anaerobic-Aerobic Activated Sludge Process(I))

  • 이민규;서근학
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.123-123
    • /
    • 1995
  • The treatment performances of anaerobic-aerobic activated sludge process were investigated under various operation conditions. The treatment system proposed in this study gave a relatively stable performance against hourly change of the flow rate and showed a satisfactory removal of nitrogen and phosphorus compounds under experimental conditions. The recycle ratio of mixed liquor from aerobic to anaerobic region and peak coefficient primarily controlled the extent of nitrogen removal. The recycle ratio had the optimum values which were determined by the microbial activities of nitrification and denitrification. The behavior of the treatment unit could be simulated by using the kinetic equations and reactor models which considered the treatment units as complete mixing tanks.