• Title/Summary/Keyword: N and P Removal

Search Result 999, Processing Time 0.026 seconds

Nutrient Removal in an Advanced Treatment Process using BIO-CLOD (BIO-CLOD를 이용한 고도처리공정에서의 영양염류 제거)

  • Park, Wan-Cheol;Lee, Mi-Ae;Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.322-329
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the effect of BIO-CLOD on advanced wastewater treatment for enhanced removal efficiency and meeting the stringent discharge water requirements of wastewater treatment plants. Methods: Two experimental apparatuses consisting of anaerobic, anoxic and aeration tanks were operated. One included a BIO-CLOD cultivation tank. Organic and nutrient parameters and removal efficiency were analyzed by pH, BOD, CODcr, SS, T-N and T-P. Results: The average removal efficiencies of BOD, COD and SS from the apparatus with BIO-CLOD tank installation were 95.5%, 88.6% and 92.9%, respectively, and these were higher than the results from the apparatus without BIO-CLOD. The average TP removal efficiency with BIO-CLOD tank marked 56.0%, higher than the 47.3% from the apparatus without one. BIO-CLOD showed a higher performance for TN removal at 49.6%, compared to the result without BIO-CLOD of 34.3% Conclusion: By reaction with BIO-CLOD, ammonia removal was effective in the aeration tank, as was phosphorus release in the anaerobic tank. Phosphorus luxury uptake and nitrification in aeration tank proceeded smoothly. The application of BIO-CLOD can improve the decrease of odor and settleability of activated sludge in a wastewater treatment plant, as well as increase the removal efficiency of organic and nutrient materials in water.

Removal Efficiency of Non-point Source Pollutants through Constructed Wetland: Case Study of Annaecheon Wetland in Daecheong Reservoir (인공습지를 이용한 호소 유입 비점오염물질 제거 효율 평가: 대청호 안내천 습지 사례 분석)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.291-304
    • /
    • 2023
  • Harmful algal blooms (HABs) have become an increasing concern in terms of human health risks as well as aesthetic impairment due to their toxicity. The reduction of water pollutants, especially nutrients from non-point sources in a reservoir watershed, is fundamental for HABs prevention. We investigated the pollutant removal efficiencies of a constructed wetland to evaluate its feasibility as a method for controlling non-point sources located in the Annaecheon stream within the Daecheong Reservoir watershed. The overall removal efficiencies of pollutants were as follows: BOD 14.3%, COD 17.9%, SS 50.0%, T-N 19.0%, and T-P 35.4%. These results indicate that constructed wetlands are effective in controlling pollutants from non-point sources. The seasonal variation in removal efficiency depended on the specific pollutants. The removal efficiencies of BOD, COD, and T-N were stable throughout the year, except during winter, which might have been influenced by lower microorganism activity. In contrast, T-P showed a consistent removal efficiency even during the winter season, suggesting that the wetland can reduce external phosphorus loading to the reservoir. Regarding the effects of pollutant loadings on removal efficiency, the effluent concentrations of all pollutants were significantly decreased compared to those in the influent in case of middle and high loadings. This demonstrates that constructed wetlands can handle high pollutant loads, including the initial runoff during rainfall, to prevent reservoir eutrophication. Despite the various strengths of wetland water purification, there are limitations as passive treatment. Therefore, more case studies should be conducted to suggest optimum operational conditions for constructed wetlands, taking into consideration reservoir-specific characteristics.

Effect of Wastewater Treatment with Tannins from Peel of Astringent Persimmon Fruits (떫은감 껍질로부터 분리한 탄닌을 이용한 폐수처리 효과)

  • Cho Young-Je;Chun Sung-Sook
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.299-304
    • /
    • 2005
  • The two major tannins were separated by Sephadex LH-20 and MCI-gel CHP-20 from peel of astringent persimmon fruits. Purified tannins were identified to (+)-catechin and (+)-gallocatechin by NMR, IR spectrum and FAB-mass spectrum. The removal rate of turbidity, T-N, T-P and CODcr in wastewater with lime and (+)-gallocatechin was higher than those of (+)-catechin because (+)-gallocatechin has more hydroxyl groups. As increasing concentration of tannins from peel of astringent persimmon fruits, the removal rate of turbidity, T-N, T-P and CODcr were increased. Synergistic activity by mixed tannins(catechin+gallocatechin) was also observed.

Chemical/Electro-Chemical Method for Swine Wastewater Treatment (화학적/전기화학적 방법을 이용한 돈사폐수 처리)

  • Yoon, S.J.;Jo, W.S.;Kim, C.H.;Park, J.I.;Shin, J.S.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.641-648
    • /
    • 2003
  • In a batch mode treatment process, which electrolyzes the wastewater after derivation of N-P crystal formation and recovery, the characteristics of pollutant removal induced with the changes of loading rate and hydraulic retention time were studied. $MgCl_2$ was used as Mg source for the formation of struvite and the molar ratio of $MgCl_2$ to $PO_4^{3-}$ in influent was 1.3. When analyzing the average treatment efficiencies and removal characteristics obtained from four separate operations (Run I, II, III, IV), removal efficiencies of PO43- was not function of its loading rate. Under a condition of sufficient aeration and Mg source provided, over 88% of $PO_4^{3-}$ was eliminated by the formation of MAP without any pH adjustment, in spite of loading rate variation. An optimum-loading rate of NH4-N to achieve high removal efficiency was approximately $100g/m^3/d$. Below that loading rate, the removal of NH4-N was proportional to the loading rate into the system, and hence stable and high removal efficiency, over 90%, was achieved. However, when the loading rate increased over that rate, removal efficiency began to drop and fluctuate. Removal efficiency of TOCs was dependant upon the hydraulic retention time ($r^2$=0.97), not upon the loading rate. Stable and high color removal (94%) was obtained with 2 days of HRT in electrolysis reactor.

Landfill Leachate Treatment and Boron Removal by Reverse Osmosis (RO막을 이용한 매립지 침출수 처리 및 붕소 제거)

  • Jung, Soojung;Na, Sukhyun;Bae, Sangok;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.657-662
    • /
    • 2012
  • This study was carried out to evaluate the removal rate of organic and inorganic matters from landfill leachate using pre-treatment process as coagulation and limonite adsorption, and membrane process as RO (reverse osmosis) and NF(nanofiltration). By adding limonite adsorption as pre-treatment process, about 40% of organic matters in leachate was removed through pre-treatment process and 74.7% of boron was removed after RO process without pH adjustment. The rejection rate of boron in RO process mainly depends on the pH and increased at pH value of 10. RO process was performed as two stage system adjusting pH condtion to 7 and 10 in second RO stage for boron removal. Most (>90%) of TOC, Cl- and inorganic matters as Ca was rejected in first RO stage, the residue was rejected in second RO and the rejection rate was above 97%. Considering economic efficiency of operation cost, NF substituted for the first RO and total removal rate of TOC was above 90%. Through RO system toxicity to Daphnia in leachate was removed completely.

Estimation of Addition and Removal Processes of Nutrients from Bottom Water in the Saemangeum Salt-Water Lake by Using Mixing Model (혼합모델을 이용한 새만금호 저층수 내 영양염의 공급과 제거에 관한 연구)

  • Jeong, Yong Hoon;Kim, Chang Shik;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.306-317
    • /
    • 2014
  • This study has been executed to understand the additional and removal processes of nutrients in the Saemangeum Salt-water Lake, and discussed with other monthly-collected environmental parameters such as water temperature, salinity, dissolved oxygen, suspended solids, and Chl-a from 2008 to 2010. $NO_3$-N, TP, $PO_4$-P, and DISi showed the removal processes along with the salinity gradients at the surface water of the lake, whereas $NO_2$-N, $NH_4$-N, and Chl-a showed addition trend. In the bottom water all water quality parameters except $NO_3$-N appeared addition processes indicating evidence of continuous nutrients suppliance into the bottom layer. The mixing modelling approach revealed that the biogeochemical processes in the lake consume $NO_3$-N and consequently added $NH_4$-N and $PO_4$-P to the bottom water during the summer seasons. The $NH_4$-N and $PO_4$-P appeared strong increase at the bottom water of the river-side of the lake and strong concentration gradient difference of dissolved oxygen also appeared in the same time. DISi exhibited continuous seasonal supply from spring to summer. Internal addition of $NH_4$-N and $PO_4$-P in the river-side of the lake were much higher than the dike-side, while the increase of DISi showed similar level both the dike and river sides. The temporal distribution of benthic flux for DISi indicates that addition of nutrients in the bottom water was strongly affected by other sources, for example, submarine ground-water discharge (SGD) through bottom sediment.

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

Effects of Submerged Plants on Water Environment and Nutrient Reduction in a Wetland (습지의 수환경과 영양물질에 미치는 침수식물의 영향)

  • Yi, Yong min;Lee, Suk Mo;Sung, Kijune
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Submerged plants whose most of vegetative mass are below the water surface can have great effects on wetland biogeochemistry and water purification through their photosynthesis and nutrient uptake processes. In this study, change of dissolved oxygen concentration and pH as well as nutrient removal capacity of the submerged plant dominant wetland were investigated using wetland mesocosm experiments. Obvious periodic DO and pH fluctuation was observed due to photosynthetic activities of the submerged plants. It implies that the submerged plants can provide periodic or sequential changes of oxic and anoxic conditions that affect nitrification and denitrification processes and contribute permanent nitrogen removal in the wetland system. The pH changes in the wetland mesocosm suggested that submerged plant could also play an important role as a temporary $CO_2$ storage. Higher nutrient removal efficiency was observed in the submerged plant dominant wetland mesocosm. The removal efficiencies under experimental conditions were 38.89, 84.70, 91.21, 70.76, 75.30% of TN, DIN, $NH_4-N$, TP, $PO_4-P$ in the wetland mesocosm, while those were 26.11, 57.34, 63.87, 28.19, 55.15% in the control treatment, respectively.

Nitrogen-doped carbon nanosheets from polyurethane foams and removal of Cr(VI)

  • Duan, Jiaqi;Zhang, Baohua;Fan, Huailin;Shen, Wenzhong;Qu, Shijie
    • Carbon letters
    • /
    • v.22
    • /
    • pp.60-69
    • /
    • 2017
  • Nitrogen-doped carbon nanosheets with a developed porous structure were prepared from polyurethane foams by hydrothermal carbonization following $ZnCl_2$ chemical activation. Scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, solid state $^{13}C$ nuclear magnetic resonance (NMR) spectra and X-ray photoelectron spectroscopy were used to characterize the nitrogen-doped carbon nanosheet structure and composition. The removal of Cr(VI) by the N-doped carbon nanosheets was investigated. The results showed that the maximum removal capacity for chromium of 188 mg/g was found at pH=2.0 with PHC-Z-3. pH had an important effect on Cr(VI) removal and the optimal pH was 2.0. Moreover, amino groups and carboxyl groups in the nitrogen-doped carbon nanosheet played important roles in Cr(VI) removal, and promoted the reduction of Cr(VI) to Cr(III).