• Title/Summary/Keyword: N Stainless Steel

Search Result 529, Processing Time 0.03 seconds

Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing (AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향)

  • Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

The Effects of Gas Compositions During Post Nitriding on the AISI 316L Stainless Steel after Plasma Carburizing

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.269-274
    • /
    • 2015
  • In this experiment, post-nitriding treatment was performed at $400^{\circ}C$ on AISI 316 stainless steel which was plasma carburized previously at $430^{\circ}C$ for 15 hours. Plasma nitriding was implemented on AISI 316 stainless steel at various gas compositions (25% $N_2$, 50% $N_2$ and 75% $N_2$) for 4 hours. Additionally, during post nitriding Ar gas was used with $H_2$ and $N_2$ to observe the improvement of surface properties. After treatment, the behavior of the hybrid layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. Meanwhile, it was found that the surface hardness increased with increasing the nitrogen gas content. Also small percentage of Ar gas was introduced in the post nitriding process which improved the hardness of the hardened layer but reduced the corrosion resistance compared with the carburized sample. The experiment revealed that AISI 316L stainless steel showed better hardness and excellent corrosion resistance compared with the carburized sample, when 75% $N_2$ gas was used during the post nitriding treatment. Also addition of Ar gas during post nitriding treatment degraded the corrosion resistance of the sample compared with the carburized sample.

A Study on the Performance of PEMFC Using the TiN-Coated 316 Stainless Steel Bipolar Plates (TiN이 코팅된 316 스테인리스강 분리판을 이용한 고분자전해질 연료전지의 성능에 관한 연구)

  • Cho, Eun-Ae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • As an alternative bipolar plate material for polymer electrolyte membrane fuel cell (PEMFC), TiN-coated 316 stainless was evaluated in terms of electrical contact resistance and water contact angle. Performance and lifetime of the TiN-coated 316 bipolar plates were measured in comparison with those of graphite and bare 316 bipolar plates. At a cell voltage of 0.6 V, current density of the single cells using graphite, AISI 316, and TiN/316 bipolar plates was 996, 796, and $896mA/cm^2$, respectively. By coating 316 stainless steel with TiN layer, performance degradation rate determined to be the voltage degradation rate at a cell voltage of 0.6 V was reduced from 2.3 to 0.43 mV/h.

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

Pitting Behavior of Ti/TiN Film Coated onto AISI 304 Stainless Steel (AISI 304 스테인리스강에 코팅된 Ti/TiN film의 공식거동)

  • 박지윤;최한철;김관휴
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2000
  • Effects of Ti content and Ti underlayer on the pitting behavior of TiN coated AISI 304 stainless steel have been studied. The stainless steel containing 0.1~1.0wt% Ti were melted with a vacuum melting furnace and heat treated at $1050^{\circ}C$ for 1hr for solutionization. The specimen were coated with l$\mu\textrm{m}$ and 2$\mu\textrm{m}$ thickness of Ti and TiN by E-beam PVD method. The microstructure and phase analysis were conducted by using XRD, XPS and SEM with these specimen. XRD patterns shows that in TiN single-layer only the TiN (111) Peak is major and the other peaks are very weak, but in Ti/TiN double-layer TiN (220) and TiN (200) peaks are developed. It is observed that the surface of coating is covered with titanium oxide (TiO$_2$) and titanium oxynitride ($TiO_2$N) as well as TiN. Corrosion potential on the anodic polarization curve measured in HCl solution increase in proportion to the Ti content of substrate and by a presence of the Ti underlayer, whereas corrosion and passivation current densities are not affected by either of them. The number and size of pits decrease with increasing Ti content and a presence of the coated Ti film as underlayer in the TiN coated stainless steel.

  • PDF

Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Stainless Steel (스테인레스 강의 경면가공을 위한 효율적 수퍼피니싱 조건의 결정)

  • Kim, Sang-Kyu;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • Stainless steel has some excellent properties as the material for the mechanical component. Purpose of this study is carried out to obtain mirror surface on the surperfinishing of stainless steel with high efficiency. To achieve this, we have conducted a series of polishing experiment for stainless steel using abrasive film from the perspective of oscillation speed, the rotational speed of workpiece, contact roller hardness, contact pressure and feed rate. Abrasive film used this study is a micro-finishing film and a lapping film. Furthermore, the polishing characteristics and efficiency of stainless steel is discussed through measuring optimal polishing time and surface roughness. From the obtained results, it was confirmed that efficient superfinishing conditions and polishing characteristic of Stainless steel can be determined.

Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC (고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성)

  • Han, Choonsoo;Chae, Gil-Byung;Lee, Chang-Rae;Choi, Dae-Kyu;Shim, Joongpyo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.118-127
    • /
    • 2012
  • TiN or Ti/TiN was coated on stainless steel as bipolar plate in polymer electrolyte membrane fuel cells (PEMFCs) to improve their corrosion resistance and electric conductivity, and their properties were examined under fuel cell operating condition. After 200 hours operation, the behaviors for the corrosion, crack and dissolution of coating layer were investigated by various techniques. The corrosion and exfoliation of coating layer were considerably generated except for SUS316L-Ti/TiN after fuel cell operation even if the electric conductivity and corrosion resistance of coated stainless steel bipolar plates were improved. The adoption of Ti layer between TiN layer and the surface of stainless steel enhanced the adhesion of TiN layer and decreased the possibility of corrosion by the increase of coating layer.

Electrochemical Characterization of Stainless Steel in Ethanolamine Solution Containing an Alkyl Group using Cyclic Voltammetry (순환전압전류법에 의한 알킬기를 함유한 에탄올아민용액에서 스테인리스의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2014
  • In this work, the current-voltage curves for stainless steel in the ethanolamine solution containing alkyl group were measured using the conventional three electrodes of cyclic voltammetry. Stainless steel as working electrode, Ag/AgCl electrode as reference electrode and Pt wire as counter electrode were used respectively. As a result, the C-V characteristics of stainless steel were to be for an irreversible process due to the oxidation current from cyclic voltammogram, using N-ethylethanolamine and N,N-dimethylethanolamine solutions. Effective diffusivity of corrosion inhibitors was decreased with increasing concentration. It was found from SEM images of the metal that the electrolyte (specific name ?)(0.5 N) as corrosion inhibitor was added into a N, N-diethylethanolamine solution ($1.0{\times}10^{-3}M$) containing copper and nickel, the corrosion inhibiting effect was enhanced.

Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 3: Corrosion Characteristic (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제3보: 부식특성)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Seo, Hyun-Soo;Nam, Ki-Woo;Lee, Kun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.85-91
    • /
    • 2009
  • A stainless steel that contains aggressive negative ion was known to decrease the corrosion resistance. Stainless steel with super corrosion resistance was developed for improvement of corrosion resistance. Super duplex stainless steel is widely used under sever environment because of good mechanical properties and corrosion resistance. Also, Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. But duplex stainless steel is not stabilized compared to austenite stainless steel in corrosion resistance. In this study, corrosion characteristic were investigated to super duplex stainless steel with additive 0.2% nitrogen with $SiO_2$ thin films coated or no coated by sol-gel method in 3.5% NaCl. From test results, corrosion current density in the heat-treated specimen for ${\sigma}$ phase precipitation was higher than that of different heat-treated specimen. Also, $SiO_2$ colloidal-coated specimen had not occurred almost corrosion.

A Corrosion Resistance Evaluation of Welded AISI 304 Stainless Steel by Electrochemical Methods. (전기화학적 방법에 의한 AISI 304 스테인리스강 용접부의 내식성 평가)

  • 백신영;김관휴
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 1990
  • Electrochemical methods have been proposed as non-destructive, rapid and quantitative means for determining the degree of sensitization associated with Chromium depleted zones surrounding precipitates of Cr carbide and formation of secondary phase in stainless steel. In this study, the specimen of AISI 304 stainless steel and its welded sections, which welded by TIG, MIG, $CO_2$ and ARC, were tested corrosion resistance by electrochemical methods in 0.5N HCl and 1N $H_2SO_4$ with or without 0.01N KSCN. The results were confirmed that electrochemical methods could be used as a test method of corrosion resistance evaluation for the welded AISI 304 stainless steel.

  • PDF