• 제목/요약/키워드: N - Monomethyl-L-arginine

검색결과 31건 처리시간 0.027초

Nitric Oxide Synthase Inhibitor Decreases NMDA-Induced Elevations of Extracellular Glutamate and Intracellular $Ca^{2+}$ Levels Via a cGMP-Independent Mechanism in Cerebellar Granule Neurons

  • Oh, Sei-Kwan;Yun, Bong-Sik;Ryoo, In-Ja;Patrick P.McCaslin;Yoo, Ick-Dong
    • Archives of Pharmacal Research
    • /
    • 제22권1호
    • /
    • pp.48-54
    • /
    • 1999
  • These studies were designed to examine the differential effect of nitric oxide (NO) and cGMP on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulates the elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), the release of glutamate, the synthesis of NO and an increase of cGMP. Although NO has been shown to stimulate guanylyl cyclase, it is unclear yet whether NO alters the NMDA-induced glutamate release and ${[Ca^{2+}]}_i$ elevation. We showed that the NO synthase inhibitor, NG-monomethyl-L-arginine (NMMA), partially prevented the NMDA-induced release of glutamate and elevation of ${[Ca^{2+}]}_i$ and completely blocked the elevation of cGMP. These effects of NO on glutamate release and [Ca2+]i elevation were unlikely to be secondary to cGMP as the cGMP analogue, dibutyryl cGMP (dBcGMP), did not suppress the effects of NMDA. Rather, dBcGMP slightly augmented the NMDA-induced elevation of ${[Ca^{2+}]}_i$ with no change in the basal level of glutamate or ${[Ca^{2+}]}_i$. The extracellular NO scavenger hydroxocobalamine prevented the NMDA-induced release of glutamate providing indirect evidence that the effect of NO may act on the NMDA receptor. These results suggest that low concentration of NO has a role in maintaining the NMDA receptor activation in a cGMP-independent manner.

  • PDF

Induction of Nitric Oxide Production by Bafilomycin A1 in Mouse Leukemic Monocyte Cell Line

  • Hong, Jang-Ja;Nakano, Yasuhiro;Ohuchi, Kazuo;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제14권3호
    • /
    • pp.143-147
    • /
    • 2006
  • In the mouse leukemic monocyte cell line RAW 264.7, the vacuolar-type $(H^+)$-ATPase (V-ATPase) inhibitor bafilomycin $A_1$ at 10 and 100 nM decreased cell growth and survival as determined by 3-(4,5-dimethyl(thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in a concentration-dependent manner. At such concentrations, bafilomycin $A_1$ induced nitric oxide (NO) production through the expression of inducible nitric oxide synthase (iNOS). The bafilomycin $A_1$-induced NO production was inhibited by the NOS inhibitor $N^G$-monomethyl-L-arginine acetate (L-NMMA). Our findings suggest that the V-ATPase inhibitor bafilomycin $A_1$ induces NO production through the expression of iNOS protein.

흰쥐 대뇌피질 절편에서 허혈에 의한 Norepinephrine 유리에 있어서 Nitric Oxide의 영향 (Role of Nitric Oxide in Ischemia-evoked Release of Norepinephrine from Rat Cortex Slices)

  • 은영아;김동찬;조규박;김기원
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.673-679
    • /
    • 1997
  • It has been generally accepted that glutamate mediates the ischemic brain damage, excitotoxicity, and induces release of neurotransmitters, including norepinephrine(NE), in ischemic milieu. In the present study, the role of nitric oxide(NO) in the ischemia-induced $[^3H]norepinephrine([^3H]NE)$ release from cortex slices of the rat was examined. Ischemia, deprivation of oxygen and glucose from $Mg^{2+}-free$ artificial cerebrospinal fluid, induced significant release of $[^3H]NE$ from cortex slices. This ischemia-induced $[^3H]NE$ release was significantly attenuated by glutamatergic neurotransmission modifiers. $N^G-nitro-L-arginine$ methyl ester(L-NAME), $N^G-monomethyl-L-arginine$ (L-NMMA) or 7-nitroindazole, nitric oxide synthase inhibitors attenuated the ischemia-evoked $[^3H]NE$ release. Hemoglobin, a NO chelator, and 5, 5- dimethyl-L-pyrroline-N-oxide(DMPO), an electron spin trap, inhibited $[^3H]NE$ release dose-dependently. Ischemia-evoked $[^3H]NE$ release was inhibited by methylene blue, a soluble guanylate cyclase inhibitor, and potentiated by 8-bromo-cGMP, a cell permeable cGMP analog, zaprinast, a cGMP phosphodiesterase inhibitor, and S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide generator. These results suggest that the ischemia-evoked $[^3H]NE$ release is mediated by NMDA receptors, and activation of NO system is involved.

  • PDF

Possible Involvement of $Ca^{2+}$ Activated $K^+$ Channels, SK Channel, in the Quercetin-Induced Vasodilatation

  • Nishida, Seiichiro;Satoh, Hiroyasu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.361-365
    • /
    • 2009
  • Effects of quercetin, a kind of flavonoids, on the vasodilating actions were investigated. Among the mechanisms for quercetin-induced vasodilatation in rat aorta, the involvement with the $Ca^{2+}$ activated $K^+$ ($K_{Ca}$) channel was examined. Pretreatment with NE ($5\;{\mu}M$) or KCl (60 mM) was carried out and then, the modulation by quercetin of the constriction was examined using rat aorta ring strips (3 mm) at $36.5^{\circ}C$. Quercetin (0.1 to $100\;{\mu}M$) relaxed the NE-induced vasoconstrictions in a concentrationdependent manner. NO synthesis (NOS) inhibitor, NG-monomethyl-L-arginine acetate (L-NMMA), at $100\;{\mu}M$ reduced the quercetin ($100\;{\mu}M$)-induced vasodilatation from $97.8{\pm}3.7%$ (n=10) to $78.0{\pm}11.6%$ (n=5, p<0.05). Another NOS inhibitor, L-NG-nitro arginine methyl ester (L-NAME), at $10\;{\mu}M$ also had the similar effect. In the presence of both $100\;{\mu}M$ L-NMMA and $10\;{\mu}M$ indomethacin, the quercetin-induced vasodilatation was further attenuated by $100\;{\mu}M$ tetraethylammonium (TEA, a $K_{Ca}$ channel inhibitor). Also TEA decreased the quercetin-induced vasodilatation in endothelium-denuded rat aorta. Used other $K_{Ca}$ channel inhibitors, the quercetin-induced vasodilatation was attenuated by $0.3\;{\mu}M$ apamin (a SK channel inhibitor), but not by 30 nM charybdotoxin (a BK and IK channel inhibitor). Quercetin caused a concentration-dependent vasodilatation, due to the endotheliumdependent and -independent actions. Also quercetin contributes to the vasodilatation selectively with SK channel on smooth muscle.

High molecular weight water-soluble chitosan acts as an accelerator of macrophages activation by recombinant interferon ${\gamma}$ via a process involving $_L$-arginine -dependent nitric oxide production

  • Kim, Hyung-Min
    • Advances in Traditional Medicine
    • /
    • 제1권1호
    • /
    • pp.71-81
    • /
    • 2000
  • High molecular weight water-insoluble chitosan alone has been previously shown to exhibit in vitro stimulatory effect on macrophages nitric oxide (NO) production. However, high molecular weight water-soluble chitosan (WSC) had no effect on NO production by itself. When WSC was used in combination with recombinant $interferon-{\gamma}\;(Rifn-{\gamma})$, there was a marked cooperative induction of NO synthesis in a dose-dependent manner. The optimal effect of WSC on NO synthesis was shown at 24 h after treatment with $rIFN-{\gamma}$. The increased production of NO from $rIFN-{\gamma}$ plus WSC-stimulated RAW 264.7 macrophages was decreased by the treatment with $N^G$ $monomethyl-_L-arginine$. The increase in NO synthesis was reflected, as an increased amounts of inducible NO synthase (iNOS) protein. Synergy between $rIFN-{\gamma}$ and WSC was mainly dependent on WSC-induced nuclear $factor-_KB$ activation. The present results indicate that WSC may provide various activities such as anti-microbial, anti-tumoral, and anti-viral. In addition, since NO has emerged as an important intracellular and intercellular regulatory molecule having functions as diverse as vasodilation, neural communication, cell growth regulation and host defense, it is tempting to hypothesize that this WSC is involved in the local control of the various fundamental processes such as cardiagra, cardiac infarction, impotence etc.

  • PDF

마우스에서 Meth-A 종양세포에 대한 Interleukin-2의 항암효과 (Effect of Interleukin-2 on Antitumor Response Against Subcutaneous Meth-A Tumor in Mice)

  • 권오덕
    • 한국임상수의학회지
    • /
    • 제17권2호
    • /
    • pp.305-314
    • /
    • 2000
  • Recombinant inteileukin-2 (IL-2) is a potent inductive stimulus for nitric oxide synthesis (NO.) and has been demonstrated as an antineoplastic agent in mice and human. But it is not let clear whether NO. can contribute to IL-2-induced therapeutic responses. Therefore, the current experiment was undertaken to clarify the effect of IL-2 on antitumor response against subcutaneous Meth-A tumor in mice. At the beginning of each experiment, normal BALB/c mice were injected subcuta-neously with $5{\times}10^6 Meth-A$ tumor cells. Some mice were implanted with osmotic minipumps con- taining 225 $\mu$l of 3.38 M $N^{\gamma}$ -monomethyl-L-arginine (MLA. an NOS inhibitor). Beginning on day 7, experimental groups were treated with a f-day course of IL-2 (50,000 lU,75,000 nJ,100,0007, 50,000 IU+MLA, 75,000 IU+MLA, 100,000 IU+MLA intraperitoneal injection every 12 hours for 5 days). The result of this experiment revealed that Meth-A tumor grew progressively in control mice. Intraperitoneal IL-2 treatment decreased tumor growth and prolonged survival. compared with con-trol mice. But no significant differences among 50.000 lU.75.000 lU and 100,000 lU of 7-2 treat-ment were observed. MLA administration prevented partially the decrease tumor growth and prolong survival of IL-2 treated mice compared with mice receiving IL-2 alone.

  • PDF

호장으로부터 분리한 스틸벤류의 Nitric Oxide 저해활성 (Inhibition of Nitric Oxide Production by Stilbenes from Polygonum cuspidatum)

  • 주시몽;홍윤정;양기숙
    • 약학회지
    • /
    • 제58권1호
    • /
    • pp.12-15
    • /
    • 2014
  • Polygonum cuspidatum which is widely distributed in Korea has been used as treatments of dermatitis, gonorrhea, favus athlete's foot, hyperlipidemia and inflammation in traditional medicine. We examined anti-oxidant and antiinflammatory activity by measuring DPPH radical scavenging activity and the inhibition of IFN-${\gamma}$ and LPS-induced NO production in RAW 264.7 murine macrophage cells. We isolated and characterized resveratrol (1), trans-resveratrol 3-O-${\beta}$-Dglucopyranoside (2). Compounds 1 and 2 showed potent activities compared with L-NMMA ($N^G$-monomethyl-L-arginine). These results suggested that the stilbene compounds isolated from Polygonum cuspidatum might be used as antiinflammatory agents.

개 하부식도괄약근의 비아드레날린성, 비콜린성 이완반응에 있어서 Cyclic Nucleotide의 역할 (Regulatory Role of Cyclic Nucleotides in Non-Adrenergic Non-Cholinergic Relaxation of Lower Esophageal Sphincter from Dogs)

  • 김영태;임병용
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권3호
    • /
    • pp.303-313
    • /
    • 1997
  • The role of the lower esophageal sphincter(LES) is characterized by the ability to maintain tone and to relax allowing the passage of a bolus. It is known that LES relaxation during swallowing may be induced by the cessation of the tonic neural excitation and the activation of non-adrenergic, non-cholinergic(NANC) inhibitory neurons. Furthermore, it is generally accepted that the relaxation of the smooth muscle is mediated primarily by the elaboration of adenosine 3',5'-cyclic monophosphate(cyclic AMP) and guanosine 3',5'-cyclic mono-phosphate(cyclic GMP) via activation of adenylate cyclase and guanylate cyclase, respectively. It is thus possible that cyclic nucleotides might be a second messenger involved in neural stimulation-induced relaxation of LES, although a relationship between relaxation and changes in cyclic nucleotides after neural stimulation has not been established. The present study was performed to define the participation of cyclic nucleotides in the relaxation of LES of dog in response to neural stimulation. Electrical field stimulation(EFS) caused relaxation of the canine isolated LES strips in a frequency-dependent manner, which was eliminated by pretreatment with tetrodotoxin$(1{\mu}M)$, but not by atropine$(100{\mu}M)$, guanethidine$(100{\mu}M)$ and indomethacin$(10{\mu}M)$. The nitric oxide synthase inhibitors, $N^G-nitro-L-arginine$, $N^G-nitro-L-arginine$ methyl ester and $N^G-monomethyl-L-arginine$ inhibited EFS-induced relaxation. Additions of sodium nitroprusside, a nitrovasodilator and forskolin, a direct adenylate cyclase stimulant, caused a dose-dependent relaxation of LES smooth muscle. Effects of sodium nitroprusside and forskolin were selectively blocked by the corresponding inhibitors, methylene blue for guanylate cyclase and N-ethylmaleimide(NEM) for adenylate cyclase, respectively. Dibutyryl cyclic AMP and dibutyryl cyclic GMP caused a concentration-dependent relaxation of the LES smooth muscle tone, which was not blocked by NEM or methylene blue, respectively. However, both NEM and methylene blue caused significant antagonism of the relaxation in LES tone in response to EFS. EFS increased the tissue cyclic GMP content by 124%, whereas it did not affect the tissue level of cyclic AMP. Based on these results, it is suggested that one of the components of canine LES smooth muscle relaxation in response to neural stimulation is mediated by an increase of cyclic GMP via the activation of guanylate cyclase. Additionally, an activation of cyclic AMP generation system was, in part, involved in the EFS-induced relaxation.

  • PDF

Carbon monoxide activates large-conductance calcium-activated potassium channels of human cardiac fibroblasts through various mechanisms

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.227-237
    • /
    • 2021
  • Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

Thymosin Beta-4, Actin-Sequestering Protein Regulates Vascular Endothelial Growth Factor Expression via Hypoxia-Inducible Nitric Oxide Production in HeLa Cervical Cancer Cells

  • Ryu, Yun-Kyoung;Lee, Jae-Wook;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.19-25
    • /
    • 2015
  • Vascular endothelial growth factor (VEGF) is an important regulator of neovascularization. Hypoxia inducible nitric oxide (NO) enhanced the expression of VEGF and thymosin beta-4 ($T{\beta}4$), actin sequestering protein. Here, we investigated whether NO-mediated VEGF expression could be regulated by $T{\beta}4$ expression in HeLa cervical cancer cells. Hypoxia inducible NO production and VEGF expression were reduced by small interference (si) RNA of $T{\beta}4$. Hypoxia response element (HRE)-luciferase activity and VEGF expression were increased by the treatment with N-(${\beta}$-D-Glucopyranosyl)-N2-acetyl-S-nitroso-D, L-penicillaminamide (SNAP-1), to generate NO, which was inhibited by the inhibition of $T{\beta}4$ expression with $T{\beta}4$-siRNA. In hypoxic condition, HRE-luciferase activity and VEGF expression were inhibited by the treatment with $N^G$-monomethyl-L-arginine (L-NMMA), an inhibitor to nitric oxide synthase (NOS), which is accompanied with a decrease in $T{\beta}4$ expression. VEGF expression inhibited by L-NMMA treatment was restored by the transfection with pCMV-$T{\beta}4$ plasmids for $T{\beta}4$ overexpression. Taken together, these results suggest that $T{\beta}4$ could be a regulator for the expression of VEGF via the maintenance of NOS activity.