• 제목/요약/키워드: Myogenic Regulatory Factors

검색결과 20건 처리시간 0.023초

Effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells

  • Han, Yunfei;Guo, Wenrui;Su, Rina;Zhang, Yanni;Yang, Le;Borjigin, Gerelt;Duan, Yan
    • Animal Bioscience
    • /
    • 제35권4호
    • /
    • pp.614-623
    • /
    • 2022
  • Objective: The objective of this study was to investigate the effects of sheep slaughter age on myogenic characteristics in skeletal muscle satellite cells (SMSCs). Methods: Primary SMSCs were isolated from hind leg biceps femoris muscles of Wurank lambs (slaughtered at three months, Mth-3) and adults (slaughtered at fifteen months, Mth-15). SMSCs were selected by morphological observation and fluorescence staining. Myogenic regulatory factors (MRF) and myosin heavy chain (MyHC) expressions of SMSCs were analyzed on days 1, 3, 4, and 5. Results: The expressions of myogenic factor 5 (Myf5), myogenic differentiation (MyoD), Myf6, and myogenin (MyoG) in Mth-15 were significantly higher in Mth-15 than in Mth-3 on days 1, 3, and 4 (p<0.05). However, MyoG expression in Mth-15 was significantly lower than in Mth-3 on day 5 (p<0.05). The expressions of MyHC I, MyHC IIa, and MyHC IIx in Mth-15 were significantly higher than in Mth-3 on days 1 and 3 (p<0.05), and MyHC IIb were significantly lower than in Mth-3 on days 3 and 4 (p<0.05). In contrast, the expression of MyHC IIx in Mth-15 was significantly lower and MyHC IIb was significantly higher than in Mth-3 on days 5 (p<0.05). Conclusion: The slaughter age altered the expression of MRFs and MyHCs in SMSCs while differentiation, which caused the variation of myogenic characteristics, and thus may affect the meat quality of Wurank sheep.

MiR-183-5p induced by saturated fatty acids regulates the myogenic differentiation by directly targeting FHL1 in C2C12 myoblasts

  • Nguyen, Mai Thi;Min, Kyung-Ho;Lee, Wan
    • BMB Reports
    • /
    • 제53권11호
    • /
    • pp.605-610
    • /
    • 2020
  • Skeletal myogenesis is a complex process that is finely regulated by myogenic transcription factors. Recent studies have shown that saturated fatty acids (SFA) can suppress the activation of myogenic transcription factors and impair the myogenic differentiation of progenitor cells. Despite the increasing evidence of the roles of miRNAs in myogenesis, the targets and myogenic regulatory mechanisms of miRNAs are largely unknown, particularly when myogenesis is dysregulated by SFA deposition. This study examined the implications of SFA-induced miR-183-5p on the myogenic differentiation in C2C12 myoblasts. Long-chain SFA palmitic acid (PA) drastically reduced myogenic transcription factors, such as myoblast determination protein (MyoD), myogenin (MyoG), and myocyte enhancer factor 2C (MEF2C), and inhibited FHL1 expression and myogenic differentiation of C2C12 myoblasts, accompanied by the induction of miR-183-5p. The knockdown of FHL1 by siRNA inhibited myogenic differentiation of myoblasts. Interestingly, miR-183-5p inversely regulated the expression of FHL1, a crucial regulator of skeletal myogenesis, by targeting the 3'UTR of FHL1 mRNA. Furthermore, the transfection of miR-183-5p mimic suppressed the expression of MyoD, MyoG, MEF2C, and MyHC, and impaired the differentiation and myotube formation of myoblasts. Overall, this study highlights the role of miR-183-5p in myogenic differentiation through FHL1 repression and suggests a novel miRNA-mediated mechanism for myogenesis in a background of obesity.

Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation

  • Chao, Zhe;Zheng, Xin-Li;Sun, Rui-Ping;Liu, Hai-Long;Huang, Li-Li;Cao, Zong-Xi;Deng, Chang-Yan;Wang, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권7호
    • /
    • pp.1037-1043
    • /
    • 2016
  • Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

Genetic Effects of Polymorphisms in Myogenic Regulatory Factors on Chicken Muscle Fiber Traits

  • Yang, Zhi-Qin;Qing, Ying;Zhu, Qing;Zhao, Xiao-Ling;Wang, Yan;Li, Di-Yan;Liu, Yi-Ping;Yin, Hua-Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.782-787
    • /
    • 2015
  • The myogenic regulatory factors is a family of transcription factors that play a key role in the development of skeletal muscle fibers, which are the main factors to affect the meat taste and texture. In the present study, we performed candidate gene analysis to identify single-nucleotide polymorphisms in the MyoD, Myf5, MyoG, and Mrf4 genes using polymerase chain reaction-single strand conformation polymorphism in 360 Erlang Mountain Chickens from three different housing systems (cage, pen, and free-range). The general linear model procedure was used to estimate the statistical significance of association between combined genotypes and muscle fiber traits of chickens. Two polymorphisms (g.39928301T>G and g.11579368C>T) were detected in the Mrf4 and MyoD gene, respectively. The diameters of thigh and pectoralis muscle fibers were higher in birds with the combined genotypes of GG-TT and TTCT (p<0.05). Moreover, the interaction between housing system and combined genotypes has no significant effect on the traits of muscle fiber (p>0.05). Our findings suggest that the combined genotypes of TT-CT and GG-TT might be advantageous for muscle fiber traits, and could be the potential genetic markers for breeding program in Erlang Mountain Chickens.

Effect of Simple Formulas of Muscle Section in Donguibogam on Myogenic Regulatory Factors and IGF-1 Expression in C2C12 Cells

  • Yang, In Jun;Tettey, Clement;Shin, Heung Mook
    • 동의생리병리학회지
    • /
    • 제28권4호
    • /
    • pp.411-416
    • /
    • 2014
  • Simple formulas (單方) of muscle section in Donguibogam (東醫寶鑑) have long been prescribed for strengthening muscle and/or prevention of age-related muscle loss. However, biological activity and mechanisms by which they influence myoblast differentiation have not been studied. Therefore, in this study, we evaluated the effects of 14 simple formulas on myoblast differentiation in C2C12 myoblast cells under non-cytotoxic ($0.5mg/m{\ell}$) conditions. C2C12 cells were treated with water extracts of simple formulas for 72 h, and RT-PCR was performed to determine the gene expression levels of myogenic regulatory factors (MRFs), including myoD, myogenin, MRF4, myf5, and insulin like growth factor-1 (IGF-1). Treatment with Colocasiae Rhizoma (CR), Pini Semen (PS), and Sesami Semen (SS) resulted in a significant increase in expression of myogenin in C2C12 cells. Treatment with Allii Macrostemi Bulbus (AM), Colocasiae Rhizoma (CR), and Pini Semen (PS) also resulted in increased expression of MRF4 in C2C12 cells. In addition, enhanced expression of IGF-1 was observed in treatment with Eucommiae cortex (EC), Dioscoreae Rhizoma (DR), Colocasiae Rhizoma (CR), Pini Semen (PS), and Sesami Semen (SS) in C2C12 cells. These results indicate that simple formulas of muscle section in Donguibogam could potentially enhance myoblast differentiation at least in part via increasing expression of myogenin, and/or MRF4 and/or IGF-1.

근육세포 분화에 대한 TGF-β1과 OP-1의 억제 효과 (The Inhibitory Effect of TGF-β1 and OP-1 onto the Myogenic Differentiation)

  • 김병국;정성수
    • Journal of Oral Medicine and Pain
    • /
    • 제26권1호
    • /
    • pp.39-50
    • /
    • 2001
  • In order to investigate the effect of Transforming growth factor ${\beta}1$(below TGF-${\beta}1$) and osteogenic protein-1(below Op-1) onto the myogenic differentiation, C2C12 satellite myoblastic cell line was cultured and treated with both growth factors. At first morphological changes with microscopical examination were examined, and isolated total RNA to analyse mRNA expression of bone marker proteins, muscle regulatory proteins, TGF-${\beta}$ receptor and their ligands by Northern blot analysis. And cellular proliferative inducibility of both growth factors was also tested to C2C12 cells. Incubating the cell with $5ng/m{\ell}$ of TGF-${\beta}1$ until 4 days almost inhibited multinucleated myotube formation expressing muscular regulatory proteins, and induced decreasing Id proteins. However, no osteoblastic phenotypes was induced by TGF-${\beta}1$ in C2C12 cells. The mRNA expression of TGF-${\beta}$ receptors with TGF-${\beta}1$ was conversed after 48 hours cultured. Type I TGF-${\beta}$ receptor was seemed to play a role in negative signalling for inhibition of myogenic differentiation. OP-1 dose dependently induced ALP activity, osteopontine production and bone sialoprotein production at concentrations above $100ng/m{\ell}$ and osteocalcin production at concentrations above $300ng/m{\ell}$. The concentration of OP-1 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubation with above $100ng/m{\ell}$ OP-1 suppressed the expression of mRNA for muscular egulatory proteins from 2 days after incubation. Expression of Id-1, 2, 3 mRNA were stimulated by OP-1 at concentration above $300ng/m{\ell}$. When C2C12 cells were treated with both growth factors, TGF-${\beta}1$ potentiated the inhibitory effect of OP-1 on myotube formation and expression of mRNA for myogenin at 12 days. And TGF-${\beta}1$ reduced osteocalcin and bone sialoprotein production induced by OP-1 at 12 days in C2C12 cells. Both growth factor had no mitogenic effect. These results indicate that OP-1 converts the differentiation pathway of C2C12 myoblasts into that of osteoblastic lineage cells and it's not heritable, but TGF-${\beta}1$ does not and has reversible inhibitory activity on the myogenic differentiation. TGF-${\beta}1$ and OP-1 play a role in myogenic differentiation via different mechanism between them.

  • PDF

오디와 누에 섭취가 rats의 저항성 운동에 따른 androgen receptor mRNA와 myogenic regulatory factors의 발현에 미치는 영향 (The effects of the mulberry and silkworm intake on androgen receptor mRNA and myogenic regulatory factors expression of rats muscle for resistance exercise)

  • 양성준;김창용;이조병;강성선;이종진
    • 한국잠사곤충학회지
    • /
    • 제51권2호
    • /
    • pp.99-106
    • /
    • 2013
  • 본 연구는 8주간의 사다리를 이용한 점진적 저항성 운동과 더불어 오디분말, 오디추출물, 누에분말의 섭취가 흰쥐의 골격근에서 androgen receptor(AR) mRNA와 myogenic regulatory factors(MRFs)의 발현에 효과가 있는지 확인하고자 하였다. 6주령의 Rat 50두를 분양받아 일주일간 순화기간을 거친 후 군간 체중을 고르게 분리하고 시료 투여 및 저항성 운동 여부에 따라 대조군, 운동군, 오디분말 운동군, 오디추출물 운동군, 누에분말 운동군으로 설정하였다. 시료 투여집단은 고형사료에 각각의 시료가 배합된 사료를 자유롭게 섭취하도록 하였다. 저항성 운동 방법은 1주일간 주당 3일, 1일 5회씩 부하 없이 맨몸 사다리 운동을 거친 후 7주간 주당 2일, 1일 10회씩 점진적인 과부하 하에서 실시하였다. 8주간 저항성 운동이 끝난 후 오른쪽 뒷다리에서 장무지굴근을 적출한 후 RNA 추출 및 cDNA를 합성하여 $-20^{\circ}C$에 보관 후 실험에 사용하였다. AR mRNA와 MRFs를 특이적으로 검출하도록 디자인된 시발체와 탐색자를 구입하여 housekeeping 유전자인 18s rRNA와 함께 Real Time PCR을 이용하여 증폭하였다. 18s rRNA를 이용하여 흰쥐의 장무지굴근에서 AR mRNA와 MRFs를 $2^{-{\Delta}{\Delta}Ct}$법을 통해 상대정량하여 골격근 내 발현 정도를 배수변화로 비교하였다. 실험 결과 사다리 운동과 시료 섭취는 흰쥐 골격근에서 AR mRNA의 발현을 유의하게 증가시키는 것으로 나타났다. 대조군과 비교하여 모든 저항성 운동 집단에서 통계적으로 유의한 차이를 보였으며 운동군에서 $4.04{\pm}1.12$, 오디분말 운동군에서 $5.23{\pm}0.56$, 오디추출물 운동군에서 $6.24{\pm}1.85$, 누에분말 운동군에서 $9.68{\pm}0.82$배를 나타내었다. 운동군과 비교하여 오디추출물 운동군과 누에분말 운동군에서 유의한 차이를 나타냈으며 오디분말 운동군의 경우 운동군과 비교하여 유의한 차이를 나타내지 않았지만 대조군과 비교하여 유의한 차이를 나타내었다. MyoD mRNA의 경우 대조군과 비교하여 운동군에서 $2.19{\pm}0.27$, 오디분말 운동군에서 $6.04{\pm}0.48$, 오디추출물 운동군에서 $4.32{\pm}1.59$, 누에분말 운동군에서 $8.11{\pm}0.57$배를 나타내었다. 운동군과 비교하여 모든 시료 섭취 집단에서 유의한 차이를 나타내었다. Myogenin mRNA의 경우 대조군과 비교하여 운동군에서 $2.70{\pm}0.57$, 오디분말 운동군에서 $4.11{\pm}0.42$, 오디추출물 운동군에서 $4.13{\pm}0.45$, 누에분말 운동군에서 $6.50{\pm}0.61$배를 나타내었다. 대조군과 비교하여 모든 저항성 운동군에서 유의한 차이를 나타냈으며 운동군과 비교하여 모든 시료 섭취 집단에서 유의한 차이를 나타내었다. 본 실험을 통해 오디와 누에의 섭취는 저항성 운동에 따른 수컷 흰쥐의 골격근에서 근육 관련 유전자인 AR mRNA와 MRFs의 발현에 긍정적인 영향을 미치며 추후 근육 증가를 목적으로 한 운동보조제 개발을 위한 기초 자료가 될 수 있을 것으로 판단된다.

Cyclic Mechanical Stretch Stimulates the Proliferation of C2C12 Myoblasts and Inhibits Their Differentiation via Prolonged Activation of p38 MAPK

  • Kook, Sung-Ho;Lee, Hyun-Jeong;Chung, Wan-Tae;Hwang, In-Ho;Lee, Seung-Ah;Kim, Beom-Soo;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.479-486
    • /
    • 2008
  • Mitogen-activated protein kinases (MAPKs) play an indispensable role in activation of the myogenic program, which is responsive to mechanical stimulation. Although there is accumulating evidence of mechanical force-mediated cellular responses, the role of MAPK in regulating the myogenic process in myoblasts exposed to cyclic stretch is unclear. Cyclic stretch induced the proliferation of C2C12 myoblasts and inhibited their differentiation into myotubes. In particular, it induced persistent phosphorylation of p38 kinase, and decreased the level of phosphorylation of extracellular-signal regulated kinase (ERK). Partial inhibition of p38 phosphorylation increased cellular levels of MyoD and p-ERK in stretched C2C12 cells, along with increased myotube formation. Treatment with $10{\mu}M$ PD98059 prevented myogenin expression in response to a low dose of SB203580 ($3{\mu}M$) in the stretched cells, suggesting that adequate ERK activation is also needed to allow the cells to differentiate into myotubes. These results suggest that cyclic stretch inhibits the myogenic differentiation of C2C12 cells by activating p38-mediated signaling and inhibiting ERK phosphorylation. We conclude that p38 kinase, not ERK, is the upstream signal transducer regulating cellular responses to mechanical stretch in skeletal muscle cells.

가금 근육세포에서 유전자 발현을 유도하는 프로모터 개발 (Development of Promoters Inducing Gene Expression in Poultry Muscle Cells)

  • 강효서;남태희;이우주;이준상;신상수
    • 한국가금학회지
    • /
    • 제50권4호
    • /
    • pp.261-266
    • /
    • 2023
  • 가축의 골격근은 동물성 단백질 식품으로서 중요한 역할을 하며, 가금육의 소비는 전세계적으로 꾸준히 증가하고 있다. 근육의 형성과 발달에는 근형성조절인자를 포함한 많은 유전자들이 관여하며, 발달 단계에 따라 유전자 발현의 정확한 조절이 필요하다. 본 연구에서는 근육에서 특이적으로 발현하는 유전자를 선발하고, 해당 유전자의 프로모터를 클로닝하고 기능을 분석하였다. 동물의 조직별 유전자 발현을 분석한 결과, 다수의 유전자들이 골격근 특이적인 발현양상을 보였는데, 특히 TNNT3와 TNNC2, MYF6 유전자들은 가금에서도 유사한 양상을 나타냈다. TNNT3, TNNC2, MYF6 유전자의 프로모터 부위를 중합효소연쇄반응을 통해 각각 1.2 kb, 1.03 kb, 1.43 kb씩 증폭하여, 녹색형광단백질 유전자를 포함한 벡터의 앞부분에 삽입하였다. 염기서열 분석 결과, 세 프로모터는 기존에 밝혀진 유전체 서열과 거의 일치함을 확인하였다. QM7 메추리 근육세포주에서 각각의 프로모터를 포함한 벡터를 도입한 결과, 세 프로모터 모두녹색형광단백질을 성공적으로 발현시켰다. 녹색 형광의 밝기는 대조군으로 사용한 CMV-IE 프로모터와 비교 시, 약 7배 정도 어두웠다. 클로닝한 프로모터들에는 230개 이상의 전사인자들이 결합할 수 있을 것으로 예측되었으며, 특히 MYF5나 MYOD, MYOG와 같은 근형성조절인자를 포함한 근육에서 발현하는 다양한 전사인자들이 결합할 수 있을 것으로 예측되었다. 이 프로모터들은 가금의 근육세포에서 유전자 발현을 유도하는 연구에 활용이 가능할 것이며, 추후연구를 통해 프로모터 부위별 발현 조절 기능 연구가 필요할 것으로 사료된다.