• Title/Summary/Keyword: Myocytes

Search Result 180, Processing Time 0.025 seconds

Bile Acid Modulation of Gastroinstinal Smooth Muscle Contraction and Ionic Currents

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.333-338
    • /
    • 2000
  • We have examined whether bile acids can affect the electrical and mechanical activities of circular smooth muscle of canine colon and ileum, using isometric tension measurement or patch clamp technique. It was found that a dilution of canine bile $(0.03{\sim}2%\;by\;volume)$ enhanced or inhibited the amplitude of spontaneous contractions. An individual component of bile, deoxycholic acid (DCA) enhanced the frequency and amplitude of the spontaneous contractile activity at $10^{-6}\;M,$ while DCA at $10^{-4}\;M$ inhibited the contraction. Similarly, the response to cholic acid was excitatory at $10^{-5}\;M$ and inhibitory at $3{\times}10^{-4}\;M.$ Taurocholic acid at $10^{-4}\;M$ enhanced the amplitude of muscle contraction. Electrically, canine bile at 1% reversibly depolarized the colonic myocytes under current clamp mode. Bile acids also elicited non-selective cation currents under voltage clamp studies, where $K^+$ currents were blocked and the $Cl^-$ gradient was adjusted so that $E_{Cl}^-$ was equal to -70 mV, a holding potential. The non-selective cation current might explain the depolarization caused by bile acids in intact muscles. Furthermore, the bile acid regulation of electrical and mechanical activities of intestinal smooth muscle may explain some of the pathophysiological conditions accompanying defects in bile reabsorption.

  • PDF

The Excitatory Mechanism of Substance P in the Antral Circular Muscle of Guinea Pig Stomach

  • Jun, Jae-Yeoul;Kim, Sung-Joon;Choi, Youn-Baik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.51-59
    • /
    • 1994
  • This study was carried out to elucidate the excitatory mechanisms of Substance P in the antral circular muscle, using isometric contraction recording, conventional microelectrode method and whole-cell patch clamp technique. Substance P produced tonic and phasic contractions in a dose-dependent manner and depolarized membrane potential with increased amplitude of slow waves in muscle strips. Voltage-dependent $Ca^{2+}$ currents were increased by the application of Substance P from a holding potential of -60mV to 50mV in 10mV steps and this effect was blocked by the addition of an antagonist. Also Substance P increased transient and spontaneous oscillatory $K^+$ outward currents. The enhanced outward currents were abolished by apamin in dispersed single cells. These results suggest that the depolarization of membrane potential by Substance P activates voltage-dependent $Ca^{2+}$ channels, which represents an excitatory response in the antral circular muscle and led to an increase in $Ca^{2+}\;activated\;K^+\;currents$.

  • PDF

Tricuspid valve dysplasia(TVD) in an American cocker spaniel dog (American cocker spaniel dog에서 발생한 삼첨판 이형성 증례)

  • Park, Chul;Choi, Chi-Bong;Sur, Jung-Hyang;Chung, Byung-Hyun;Park, Hee-Myung
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.125-129
    • /
    • 2004
  • A 2-year-old, female, American cocker spaniel dog presented for a 1-year history of severe ascites, exercise intolerance, tachypnea. At that time, she was in an emergency state. First, the dog was stabilized with oxygen therapy. A diagnosis of cardiac problem was made from history, auscultation, radiograph, ECG, and echocardiography. Jugular pulsation was palpated and a harsh, systolic murmur of tricuspid regurgitation was prominent at the right cardiac apex. Tricuspid valve dysplasia (TVD) was confirmed with echocardiography, accompanying enormous myocardial hypertrophy. The clinical signs had been improved for 8 months with careful therapy and periodic abdominocentesis, and ascites was well controlled. The situation, however, became worse quickly in a week because the client did not follow our management schedule. Finally, she died due to dyspnea and shock. After the spontaneous death, necropsy and histopathological examination were performed and when we opened the thorax, a significantly large heart was observed. On histopathological findings, grossly myocardium appeared pale initially, then progressed to yellow and white. Microscopically, there was an extensive hemorrhage along with loss of myocardial striations. Interstitial fibrosis and various degenerative alterations in myocytes were also present.

Characterization of Protein Kinases Activated during Treatment of Cells with Okadaic Acid

  • Bogoyevitch, Marie A.;Thien, Marilyn;Ng, Dominic C.H.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.517-525
    • /
    • 2001
  • Six renaturable protein kinases that utilize the myelin basic protein (MBP) as a substrate were activated during prolonged exposure of cardiac myocytes to okadaic acid (OA). We characterized the substrate preference and activation of these kinases, with particular emphasis on 3 novel kinases-MBPK-55, MBPK-62 and MBPK-87. The transcription factors c-Jun, Elk, ATF2, and c-Fos that are used to assess mitogen-activated protein kinase activation were all poor substrates for these three kinases. MAPKAPK2 was also not phosphorylated. In contrast, Histone IIIS was phosphorylated by MBPK-55 and MBPK-62. These protein kinases were activated in cultured cardiac fibroblasts, H9c2 cardiac myoblasts, and Cos cells. High concentrations (0.5 to $1\;{\mu}M$) of OA were essential for the activation of the protein kinases in all of the cell types examined, whereas calyculin A [an inhibitor of protein phosphatase 1 (PP1) and PP2A], cyclosporin A (a PP2B inhibitor), and an inactive OA analog all failed to activate these kinases. The high dose of okadaic acid that is required for kinase activation was also required for phosphatase inhibition, as assessed by immunoblotting whole cell lysates with anti-phosphothreonine antibodies. A variety of chemical inhibitors, including PD98059 (MEK-specific), genistein (tyrosine kinase-specific) and Bisindolylmaleimide I (protein kinase C-specific), failed to inhibit the OA activation of these kinases. Thus, MBPK-55 and MBPK-62 are also Histone IIIS kinases that are widely expressed and specifically activated upon exposure to high OA concentrations.

  • PDF

Distributional Patterns of Phospholipase C Isozymes in Heart and Brain of Spontaneously Hypertensive and Normotensive Rats

  • Choi, Ji-Woong;Cho, Young-Jin;Cha, Seok-Ho;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.385-392
    • /
    • 1997
  • The phospholipase C (PLC)-mediated intracellular signal transduction pathway is considered to be involved in the regulation of blood pressure. However, little information is available concerning the distributional and functional significance of PLC in the genetic hypertensive rats. As the first step of knowing the role of PLC on hypertension, we investigated the distribution of 6 PLC isozymes $(PLC-{\beta}1,\;-{\beta}3,\;-{\beta}4,\;-{\gamma}1,\;-{\gamma}2\;and\;-{\delta}1)$ in the heart and brain, which are concerned with hypertension, in the normotensive Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR) using the western blotting and immunocytochemistry. The immunoreactivities of PLC isozymes in brain were detected, but there were no distributional and quantitative differences between the WKY and SHR. In the heart, but the immunoreactivities to $PLC-{\beta}1$ and $-{\gamma}2$ in the SHR were higher than those in WKY. In immunocytochemistry to confirm these western blotting data, $PLC-{\beta}1$ and $-{\gamma}2$ were localized in cardiac myocytes and the intensities of immunoreactivity in SHR were stronger than that in WKY. These results suggest that $PLC-{\beta}1$ and $-{\gamma}2$ would have possibility to concern with the establishment of spontaneous hypertension.

  • PDF

Effects of $Cl^-$ Channel Blockers on the Cardiac ATP-sensitive $K^+$ Channel

  • Kwak, Yong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.305-313
    • /
    • 1999
  • To explore whether $Cl^-$ channel blockers interact with the ATP-sensitive $K^+\;(K_{ATP})$ channel, I have examined the effect of two common $Cl^-$ channel blockers on the $K_{ATP}$ channel activity in isolated rat ventricular myocytes using patch clamp techniques. In inside-out patches, 4,4'-diisothio-cyanatostilbene- 2,2'-disulfonic acid (DIDS) and niflumic acid applied to bath solution inhibited the $K_{ATP}$ channel activity in a concentration-dependent manner with $IC_{50}$ of 0.24 and 927 ${\mu}M,$ respectively. The inhibitory action of DIDS was irreversible whereas that of niflumic acid was reversible. Furthermore, DIDS-induced block was not recovered despite exposure to ATP (1 mM). In cell-attached and inside-out patches, DIDS blocked the pinacidil- or 2,4-dinitrophenol (DNP)-induced $K_{ATP}$ channel openings. In contrast, niflumic acid did not block the pinacidil-induced $K_{ATP}$ channel openings in inside-out patches, but inhibited it in cell-attached patches. DIDS and niflumic acid produced additional block in the presence of ATP and did not affect current-voltage relationship and channel kinetics. All these results indicate that DIDS among $Cl^-$ channel blockers specifically blocks the cardiac $K_{ATP}$ channel.

  • PDF

Torilin from Torilis japonica (Houtt.) DC. Blocks hKv1.5 Channel Current

  • Kwak, Yong-Geun;Kim, Dae-Keun;Ma, Tian-Ze;Park, Sun-Ah;Park, Hoon;Jung, Young-Hoon;Yoo, Dong-Jin;Eun, Jae-Soon
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.834-839
    • /
    • 2006
  • Torilin was purified from Torilis japonica (Houtt.) DC., and its effects on a rapidly activating delayed rectifier $K^+$ channel (hKv1.5), cloned from human heart and stably expressed in Ltk cells, as well as the corresponding $K^+$ current (the ultrarapid delayed rectifier, $I_{KUR}$) were assessed in human atrial myocytes. Using the whole cell configuration of the patch-clamp technique, torilin was found to inhibit the hKv1.5 current in time and voltage-dependent manners, with an $IC_50$ value of $2.51{\pm}0.34\;{\mu}M$ at +60 mV. Torilin accelerated the inactivation kinetics of the hKv1.5 channel, and slowed the deactivation kinetics of the hKv1.5 current, resulting in a tail crossover phenomenon. Additionally, torilin inhibited the hKv1.5 current in a use dependent manner. These results strongly suggest that torilin is a type of open-channel blocker of the hKv1.5 channel.

Salubrinal Alleviates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Endoplasmic Reticulum Stress Pathway

  • Rani, Shilpa;Sreenivasaiah, Pradeep Kumar;Cho, Chunghee;Kim, Do Han
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.66-72
    • /
    • 2017
  • Pathological hypertrophy of the heart is closely associated with endoplasmic reticulum stress (ERS), leading to maladaptations such as myocardial fibrosis, induction of apoptosis, and cardiac dysfunctions. Salubrinal is a known selective inhibitor of protein phosphatase 1 (PP1) complex involving dephosphorylation of phospho-eukaryotic translation initiation factor 2 subunit $(p-eIF2)-{\alpha}$, the key signaling process in the ERS pathway. In this study, the effects of salubrinal were examined on cardiac hypertrophy using the mouse model of transverse aortic constriction (TAC) and cell model of neonatal rat ventricular myocytes (NRVMs). Treatment of TAC-induced mice with salubrinal ($0.5mg{\cdot}kg^{-1}{\cdot}day^{-1}$) alleviated cardiac hypertrophy and tissue fibrosis. Salubrinal also alleviated hypertrophic growth in endothelin 1 (ET1)-treated NRVMs. Therefore, the present results suggest that salubrinal may be a potentially efficacious drug for treating pathological cardiac remodeling.

Altered Delayed Rectifier $K^+$ Current of Rabbit Coronary Arterial Myocytes in Isoproterenol-Induced Hypertrophy

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.33-40
    • /
    • 2001
  • The aim of present study was to define the cellular mechanisms underlying changes in delayed rectifier $K^+\;(K_{DR})$ channel function in isoproterenol-induced hypertrophy. It has been proposed that $K_{DR}$ channels play a role in regulation of vascular tone by limiting membrane depolarization in arterial smooth muscle cells. The alterations of the properties of coronary $K_{DR}$ channels have not been studied as a possible mechanism for impaired coronary reserve in cardiac hypertrophy. The present study was carried out to compare the properties of coronary $K_{DR}$ channels in normal and hypertrophied hearts. These channels were measured from rabbit coronary smooth muscle cells using a patch clamp technique. The main findings of the study are as follows: (1) the $K_{DR}$ current density was decreased without changes of the channel kinetics in isoproterenol-induced hypertrophy; (2) the sensitivity of coronary $K_{DR}$ channels to 4-AP was increased in isoproterenol-induced hypertrophy. From the above results, we suggest for the first time that the alteration of $K_{DR}$ channels may limit vasodilating responses to several stimuli and may be involved in impaired coronary reserve in isoproterenol-induced hypertrophy.

  • PDF

Regulation of BNIP3 in Normal and Cancer Cells

  • Lee, Hayyoung;Paik, Sang-Gi
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is a mitochondrial pro-apoptotic protein that has a single Bcl-2 homology 3 (BH3) domain and a COOH-terminal transmembrane (TM) domain. Although it belongs to the Bcl-2 family and can heterodimerize with Bcl-2, its pro-apoptotic activity is distinct from those of other members of the Bcl-2 family. For example, cell death mediated by BNIP3 is independent of caspases and shows several characteristics of necrosis. Furthermore, the TM domain, but not the BH3 domain, is required for dimerization, mitochondrial targeting and pro-apoptotic activity. BNIP3 plays an important role in hypoxia-induced death of normal and malignant cells. Its expression is markedly increased in the hypoxic regions of some solid tumors and appears to be regulated by hypoxia-inducible factor (HIF), which binds to a site on the BNIP3 promoter. Silencing, followed by methylation, of the BNIP3 gene occurs in a significant proportion of cancer cases, especially in pancreatic cancers. BNIP3 also has a role in the death of cardiac myocytes in ischemia. Further studies of BNIP3 should provide insight into hypoxic cell death and may contribute to improved treatment of cancers and cardiovascular diseases.