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Distributional Patterns of Phospholipase C Isozymes in Heart and
Brain of Spontaneously Hypertensive and Normotensive Rats
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The phospholipase C (PLC)-mediated intracellular signal transduction pathway is considered to be in-
volved in the regulation of blood pressure. However, little information is available concerning the
distributional and functional significance of PLC in the genetic hypertensive rats. As the first step of
knowing the role of PLC on hypertension, we investigated the distribution of 6 PLC isozymes (PLC- 81,
-B3, -84, -71, - 72 and - §1) in the heart and brain, which are concerned with hypertension, in the nor-
motensive Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR) using the western blotting
and immunocytochemistry. The immunoreactivities of PLC isozymes in brain were detected, but there were
no distributional and quantitative differences between the WKY and SHR. In the heart, but the im-
munoreactivities to PLC- 51 and - 72 in the SHR were higher than those in WKY. In immunocyto-
chemistry to confirm these western blotting data, PLC- 31 and - 72 were localized in cardiac myocytes
and the intensities of immunoreactivity in SHR were stronger than that in WKY. These results suggest

that PLC-A1 and -2 would have possibility to concern with the establishment of spontaneous
hypertension.
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INTRODUCTION from an aortic cDNA library of SHR revealed a total

of three SHR-specific point mutations, two of which

The spontanously hypertensive rat (SHR) is widely
used in cardiovascular research as a model of human
essential hypertension. The mechanisms involved in
the elevation of blood pressure in SHR are poorly un-
derstood. Recently several lines of evidence suggest
a role for the PI second messenger system in the
pathogenesis of hypertension in the SHR (Turla et al,
1990; Uehara et al, 1988; Yagisawa et al, 1991,
Kawaguchi et al, 1992). Uehara et al. (1988) reported
that the increase of vascular PLC activity precedes
the development of hypertension and that the en-
hancement may be induced by both quantitative and
qualitative changes in phospholipase C (PLC) in
SHR. DNA sequencing of PLC-§ c¢DNA cloned
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resulted in amino acid substitutions, situated in the
putative catalytic X domain (Yagisawa et al, 1991).
PLC isozymes can be divided into three structural
types, B (B1, B2, A3 and B4), y (71 and ¥2) and
J (01, 82, 63 and 54),.on the basis of the relative
location of the X and Y domains in the primary
structure of the enzymes. The distinct structural
features of the different PLC types appear to be
related to specific mechanisms of receptor-mediated
enzyme activation (John et al, 1993; Wahl et al,
1992; Yagisawa et al, 1994). PLC cleaves phospha-
tidylinositol 4,5-bisphosphate (PIP,) into two second
messenger molecules, inositol 1,4,5-triphosphate (IP3)
and diacylglycerol (DG) (Teitelbaum I, 1992; Mei-
senhelder et al, 1989). These second messengers are
the integral components of the intracellular Ca’* mes-
senger system. This signal transduction pathway has
been considered to be involved in the regulation of
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vasoconstriction and blood pressure (Baraban et al,
1985; Takori et al, 1986; Griendling et al, 1986).

Although derangements of PLC-mediated PI meta-
bolism have been suggested to play a role in the
pathogenesis of essential hypertension, informations
are still limitted, concerning the functional signifi-
cance of PLC in other important tissues than aorta
that control the blood pressure. Moreover, although
Uehara et al. (1988) reported there was no difference
in the cardiac PLC activity between adult WKY and
SHR, Kawaguchi et al. (1992) found that the accu-
mulations of IP;, IP, and DG were significantly
enhanced in isolated myocytes from SHR heart by the
stimulation with. norepinephrine, and PLC activity
increased with age in SHRSP heart cells. Thus, it is
not clear that PLC-mediated PI turnover pathways
play a role in the pathogenesis of spontaneous hyper-
tension.

Central autonomic dysfunction is also known to
play an important role in the generation and mainte-
nance of hypertension in the SHR (Birkenhager et al,
1984; McCarty et al, 1987; Judy et al, 1979). The
neurons in the rostral ventrolateral medulla (RVLM)
and rostral ventromedial medulla (RVMM) are criti-
cally involved in the generation of neurogenic vaso-
motor tone and hence the maintenance of the arterial
pressure in various species (Reis et al, 1989; Guyenet
et al, 1990). In microinjection of lidocaine and elec-
trical stimulation, the RVLM and RVMM (differen-
tially control cardiovascular function (Brody et al,
1991). But, there was no study for the PLC distribu-
tion in the SHR brain.

As the first step, therefore, to know the role of
PLC on tissues concerning with hypertension, we in-
vestigate the distributional difference of PLC isozy-
mes which can be obtained antibodies of PLC iso-
zymes (PLC-51, -83, - 54, -71, -72 and -§1) in
the brain and heart of the WKY and SHR using the
western blotting and immnocytochemistry.

METHODS

Animals

Male WKY and SHR were purchased from Korea
Food and Drug Administration (Seoul, Korea) and
housed in commercial equipment in a conventional
environment for at least 3 days prior to use. They

were provided with pelleted standard diet and tap
water ad [libitum.

Chemicals

Trizma-base, ethylenediamine-tetraacetic acid (EDTA),
ethylene glycol-bis (b-aminoethyl ether)-N,N,N’,N’-
tetraacetic acid (EGTA), S-mercaptoethanol, phenyl-
methyl-sulfonyl fluoride (PMSF), leupeptin, Tween
20, bovine serum albumin (BSA, fraction V), sodium-
periodate, lysine, paraformaldehyde and 3,3’-diamino-
benzidine were purchased from Sigma (St. Louis,
MO). NBT/BCIP was purchased from Boehringer
mannheim (Germany). 125[I]—protein A was purchased
from Amersham (100 .Ci/ml, Amersham, UK). All
other chemicals were of analytical grade from com-
mercial sources.

Antibodies

PLC isozymes were detected with immunoblotting
and immunocytochemistry using rabbit polyclonal
antibodies against PLC- 31, - 33, - B4 and -72 or
mouse monoclonal antibodies against PLC- 71 and -
51. These antibodies were kindly gifted by Sue Goo
Rhee, NIH, USA.

Preparation of tissue homogenates for western blot-
ting

12-weeks-aged male WKY and SHR were decapi-
tated and the heart and brain were immediately re-
moved, weighed, transferred into ice-cold homo-
genizing buffer (10 mM Tris-HCl, 1 mM EDTA, 10
mM EGTA, 10 mM S -mercaptoethanol, 1 mM PMSF,
0.02% leupeptin, 0.1% Triton X-100, pH 7.5), and
homogenized. The homogenate were centrifuged at
20,000 x g for 20 min. A part of the supernatant was
taken for protein determination (Smith et al, 1985),
while the remainder was immediately mixed (1:1)
with 2 x SDS sample buffer and incubated in a
heat-block for 5 min. The boiled samples were either
used immediately or frozen at —20°C for SDS-
PAGE.

Western blot and phosphoimager analysis

PLC isozymes in 100 ug supernatant proteins were
separated by 6% SDS-polyacrylamide gels and trans-
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ferred to nitrocellulose sheets (Schleicher & Schuell,
Germany). Nonspecific binding sites on nitrocellulose
membrane were blocked by incubation with 3% BSA
in TTBS (Tris; 100 mM, NaCl; 150 mM, Tween 20;
0.5%) for 1 hr at room temperature. Nitrocellulose
sheets were then incubated overnight at 4°C in the
primary antibody against PLC isozymes diluted in
0.1% BSA-PBS (1:1000). After being rinsed with
TTBS, alkaline phosphatase-conjugated goat anti-rab-
bit IgG and goat anti-mouse IgG (Kirkegaard & Perry
Lab. Inc, Gaithersburg, Maryland, USA) at 1:1000
dilution for detecting polyclonal antibodies (anti-
PLC- 81, -833, -54 and -72) and monoclonal anti-
bodies (anti-PLC- y1 and - §1) respectively were ad-
ded and incubated for 2 hr at room temperature.
Immunoreactive bands were visualized with the NBT/
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BCIP (5-bromo-4-chloro-3 indolyl phosphate/Nitro-
blue tetrazolium) method.

For phosphoimager analysis, 125[I]—p1rotein A, which
was diluted 1:1000, was treated instead of secondary
antibody for 2 hours at room temperature. After
washing with TTBS, radioactivities were counted
using phosphoimager (Fuji, BAS 2500, Japan). The
unit of radioactivities was represented by PSL (photo
stimulated luminescence)/mm”.

Immunocytochemistry

The animals were anesthetized with an intraperi-
toneal injection of an urethane (1.2 g/kg b.w.). They
were perfused transcardially with phosphate-buffered
saline (PBS; 10 mM phosphate buffer, 150 mM NaCl,
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Fig. 1. Representative immunoblotting of PLC isozymes in brain and

heart

PLC- 81 (A), PLC- 83 (B), PLC- 54 (C), PLC-y1 (D), PLC-72 (E)
and PLC-481 (F) in the whole brain and heart (lane 1: standard, 2,3:
whole brain of the WKY and SHR, 4,5: heart of the WKY and SHR).
50 ug protein content for PLC- A1 and - 71, and 100 ug protein content

for other enzymes.
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pH7.4) followed preservation by perfusion with para-
formaldehyde-lysine-periodate mixture (PLP; 10 mM
periodate, 75 mM lysine, 2% paraformaldehyde, 37
mM phosphate buffer, pH 6.2) for 5 min. The heart
was excised, and cut into slices that were fixed by
immersion in the same PLP solution for 6 hr at room
temperature and then overnight at 4°C. This tissue
was embedded in wax for immunoperoxidase locali-
zation using the avidin-biotin-peroxidase method by
using a VECTASTAIN Elite ABC kit. (Vector Labo-
ratories, Burlingame, California, USA). Avidin-bio-
tin-peroxidase method is following this ; The sections
that were embedded in wax were cut at a thickness
of 4 ym using a microtume (Technical Products In-
ternational, St. Louis, MO). Sections were dewaxed,
rehydrated, and blocked with normal blocking serum
of the kit before staining. Sections were then incu-
bated overnight at 4°C in the primary antibody against
PLC- 81 (1:750), PLC- 83 (1:750), PLC- 84 (1:750),
PLC-y1 (1:100), PLC-y2 (1:500) and PLC-§1
(1:50) diluted in 0.1% BSA-PBS. After being rinsed
in PBS, the sections were incubated with diluted
biotinylated secondary antibody solution of the kit for
2 hr at room temperature. Sections were incubated
with VECTASTAIN Elite ABC reagent for 30 min.
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For the detection of avidin-biotin-peroxidase, the sec-
tions were incubated in 0.05% 3,3’-diaminobenzidine
containing 0.01% H,0;. After washing and dehy-
drating enough, the sections were mounted with
canadabalsam and observed with a light microscope
(Olympus, Japan)

RESULTS
Western blot and phosphoimager analysis

To know the distributional patterns of PLC iso-
zymes in the heart and brain of the WKY and SHR,
immunoreactivities to the PLC- A1, - 53, -84, - 71,
-72 and -4§1 isoforms were determined in tissue-
homogenates using the western blotting method.
Whole rat brain and heart tissue homogenates from
the WKY and SHR displayed protein bands cor-
responding to all of the 6 PLC isozymes, PLC- S1,
-B3 and -p54, PLC-y1 and -y2, PLC-61. In the
brain, immunoreactivities of 6 PLC isozymes were
detected, but there were no differences between
WKY and SHR (Fig 1). The 6 PLC isozymes were
detected in heart. In contrast to the brain, the inten-
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Fig. 2. Quantification of PLC- 31 and - 72 in the heart homogenates from WKY
and SHR. 50 pg protein content for PLC- £1 and 100 ug protein content for PLC- y
2. Values were represented by mean+SD from 3 rats.
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Fig. 3. Immunocytochemistry for PLC- 31 and - 72 in heart of WKY and SHR.

PLC- 31 (A: WKY and B: SHR) and -2 (C: WKY and D: SHR).

sities of PLC- 81 and - y2 in SHR were stronger than
those in WKY (Fig. 1-A and E). In order to quantify
the PLC- 81 and - 72, radioactivity was determined
using '21] labeled protein A by phosphoimager. The
radioactivities of PLC- 81 and - 72 were significantly
enhanced by 2.1 folds and 1.6 folds in SHR against
that of WKY, respectively. The radioactivities of
PLC- 41 (loading content of protein: 50 ug protein)
and - 72 (loading content of protein: 100 ug) were
77.8+17.1 and 156.0+23.4 PSL/mm’, respectively
(Fig. 2).

Immunocytochemistry in heart

In order to clarify the distribution of PLC- 81 and
- 72 which had difference in western blotting experi-
ments, immunohistochemical study using antibody to
the PLC- 81 and - y2 was perfomed in heart. Charac-
teristrically PLC- 81 and -72 was only shown in
cardiac myocytes of the both strains, and the staining
intensities of PLC- 81 and - 72 in SHR was stronger

than those in WKY (Fig. 3-A~D).

DISCUSSION

To clarify the physiological and pharmacological
role of PLC isozyme, it is needed to determine the
distribution in its target organ. In the present study,
we studied the distributional patterns of PLC iso-
zymes in the brain and heart of the WKY and SHR
using the western blotting and immunocytochemistry.

In whole brain, we did not observe any difference
of isozyme-specific immunoreactivity between the
WKY and SHR (Fig. 1). It has been reported several
times that neurons in the rostral ventrolateral medulla
are critically involved in the generation of neurogenic
vasomotor tone and subsequently maintain the arterial
pressure in various species (Guyenet et al, 1990;
Brody et al, 1991). Mizuguchi et al. (1991) reported
that the immunoreactivity of cultured neurons, astro-
cytes and oligodendrocytes was neurons > oligoden-
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drocytes > astrocytes for PLC- 3 and - 7, and astro-
cytes > oligodendrocytes > neurons for PLC- §. In-
terestingly in our results, there was no differences of
immunoreactivity to PLC isozymes in the brain of the
WKY and SHR (Fig. 1). These results suggest that
the PLC of brain may play little role in genetic
hypertension.

Hypertension and cardiac hypertrophy are com-
monly associated with heart failure and are two
features that characterize SHR (Caird et al, 1971).
The renin-angiotensin-aldosterone system is impli-
cated in the transition to heart failure: SHR treated
with the angiotensin converting enzyme inhibitor
captopril starting at 12 months of age did not develop
heart failure during the 18~24 month observation
period (Weber et al, 1993; Brooks et al, 1992). Myo-
cardial hypertrophy is mediated through angiotensin
II AT1 type receptor (Sadoshima et al, 1993), which
activate the G protein, PLC, DG and IP; pathway
(Marrero et al, 1994), to increase the expression of
c-fos protooncogenes (Sadoshima et al, 1993), and
growth factors (Boluyt et al, 1995; Rosendorff et al,
1996). The p-angiotensinogen and steady-state mRNA
levels for cardiac angiotensinogen increased in SHR
during the development of hypertension (Tamura et
al, 1996). Transforming growth factor- 31 (TGF- A1)
mRNA levels increased in SHR with failing hearts,
and transient increase in TGF- 41 mRNA abundance
preceded the elevation in fibronectin and collagen
mRNA levels after experimental aortic constriction in
rats (Conrad et al, 1994; Villareal et al, 1992). The
y-isoforms of PLC are activated by tyrosine phos-
phorylation, and it is these forms of PLC that are
regulated by growth factor receptors (Noh et al,
1995). In this study, immunoreactivity of PLC- y2
was increased in cardiac myocyte of the SHR (Fig.
1-E and 3-C, D). This result indicates that the in-
crease in PLC-72 in SHR may have a promotor
activity in the development of hypertension as well
as secondary changes in response to hypertension,
such as cardiac hypertrophy.

PLC- 41 binds to the GTP-bound G, probably via
the carboxyl-terminal regions of both proteins, re-
sulting in the activation of PLC- 81 (Noh et al, 1995).
Kanagy et al. (1994) reported that vascular reactivity
to mastoparan, a G protein activator, in genetically
hypertensive rats was significantly enhanced. In this
point, there is the possibility that increased responsi-
veness of G proteins leads to elevated PLC- 81 acti-

vity and may contribute. to the elevated vascular res-
ponsiveness of genetically hypertensive rat. cAMP
independent pathway of sodium transport inhibition
induced by activation of dopamine D1-like receptors
is mediated by PLC, and intrarenal administration of
norepinephrine or D1 agonist increases PLC- 51 ex-
pression and activity (Jose et al, 1995). Significant
increases in dopamine and norepinephrine uptake
Vimax in the frontal cortex were shown in SHR (Hendley
et al, 1992). The decrease of the serum calcium level
in SHR induced the decrease of central dopamine
level (Sutoo et al, 1993).

In this experiment, the quantitative increment of
the PLC- A1 and - y2 in the SHR heart would have
possibility in the development of cardiovascular ab-
normalities, such as cardiac hypertrophy and myo-
cardial fibrosis in genetic hypertensive rats.
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