Lee, Jung Hee;Jeong, Dong Seop;Sung, Kiick;Kim, Wook Sung;Lee, Young Tak;Park, Pyo Won
Journal of Chest Surgery
/
v.48
no.3
/
pp.164-173
/
2015
Background: Hypertrophied myocardium is especially vulnerable to ischemic injury. This study aimed to compare the early and late clinical outcomes of three different methods of myocardial protection in patients with aortic stenosis. Methods: This retrospective study included 225 consecutive patients (mean age, 65{\pm}10 years; 123 males) with severe aortic stenosis who underwent aortic valve replacement. Patients were excluded if they had coronary artery disease, an ejection fraction <50%, more than mild aortic regurgitation, or endocarditis. The patients were divided into three groups: group A, which was treated with antegrade and retrograde cold blood cardioplegia; group B, which was treated with antegrade crystalloid cardioplegia using histidine-tryptophan-ketoglutarate (HTK) solution; and group C, treated with retrograde cold blood cardioplegia. Results: Group A contained 70 patients (31.1%), group B contained 74 patients (32.9%), and group C contained 81 patients (36%). The three groups showed significant differences with regard to the proportion of patients with a New York Heart Association functional classification ${\geq}III$ (p=0.035), N-terminal pro-brain natriuretic peptide levels (p=0.042), ejection fraction (p=0.035), left ventricular dimensions (p<0.001), left ventricular mass index (p<0.001), and right ventricular systolic pressure (p <0.001). Differences in cardiopulmonary bypass time (p=0.532) and aortic cross-clamp time (p=0.48) among the three groups were not statistically significant. During postoperative recovery, no significant differences were found regarding the use of inotropes (p=0.328), mechanical support (n=0), arrhythmias (atrial fibrillation, p=0.347; non-sustained ventricular tachycardia, p=0.1), and ventilator support time (p=0.162). No operative mortality occurred. Similarly, no significant differences were found in long-term outcomes. Conclusion: Although the three groups showed some significant differences with regard to patient characteristics, both antegrade crystalloid cardioplegia with HTK solution and retrograde cold blood cardioplegia led to early and late clinical results similar to those achieved with combined antegrade and retrograde cold blood cardioplegia.
To investigate how Jagamchotang provent cellular injury by a certain starting point on reperfusion injury after ischemia in myocardial cell, conducted MTT assay, LM stydy and measured LDH secretion, heart rate and nitric oxide(NO), and got the following results. 1. Jagamchotang did not injure cells even in $20{\mu}g/ml$. 2. Jaganchotang repressed the toxicity of mitochondria and cell membrane in reperfusing after ischemia and repressed the contraction of promontory of myocardial cell and reduction of the number of cells. Also maintained regular heart rate and reduced the number of heart rate. 3. Synthesis of NO by Jagamchotang in ischemia increased 1.9 times than a control. 4. When reperfusing with sodium nitropruside (SNO), NO donor in ischemia repressed the toxicity of mitochondria as the case of reperfusing with Jagamchotang in ischemia. Therefore, putting these findings together, it. can be said the effect of Jagamchotang in ischemia will be closely related with generation of NO.
The present study was prospectively designed to assess the clinical effect of leukocyte-depleted blood cardioplegic solution (BCS) on myocardium during cardiac surgery with cardiopulmonary bypass (CPB). 30 adult patients scheduled for elective cardiac surgery were divided into control group (n=15), which infused routine BCS, and leukocyte-depleted (LD) group (n=15), which infused leukocyte-depleted BCS. Total and differential leukocyte counts in BCS, malondialdehyde (MDA) and troponin-T (TnT) concentrations in coronary sinus blood, and cardiac index (CI) were measured at preoperative and postoperative period. The BCS in LD group had less total leukocyte counts with neutropenia than that in control group (P<0.01). MDA (3.70$\pm$0.35 vs 5.90$\pm$0.57 $\mu$mol/L, p<0.05) and TnT (0.42$\pm$0.03 vs 0.60$\pm$0.09 ng/mL, p<0.05) were significantly low in LD group compared with control group, while LD group had higher CI (3.28$\pm$0.16 L/min/$m^2$, p<0.05) than control group (2.69$\pm$0.18 L/min/$m^2$). These results suggest that leukocyte-depleted blood cardioplegic solution has a better myocardial protective effect with less generations of oxygen free radicals and ischemia/reperfusion injury.
The present study was conducted to assess the possible contribution of arachidonic acid to generation of reactive oxygen metabolites and myocardial damage in ischemic-reperfused heart. Langendorff preparations of isolated rat heart were made ischemic by hypoperfusion (0.5 ml/min) for 45 min, and then followed by normal oxygenated reperfusion (7 ml/min). The generation of superoxide anion was estimated by measuring the SOD-inhibitable ferricytochrome C reduction. The myocardial cellular damage was observed by measuring LDH released into the coronary effluent. Oxygenated reperfusion following a period of ischemia produced superoxide anion, which was inhibited by both indomethacin (60 nmole/ml) and ibuprofen $(30\;{\mu}g/ml)$. Sodium arachidonate $(10^{-7}-10^{-2}{\mu}g/ml)$ administered during the period of oxygenated reperfusion stimulated superoxide anion production dose-dependently. The rate of arachidonate-induced superoxide generation was markedly inhibited by indomethacin, a cyclooxygenase inhibitor; nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, and by eicosatetraynoic acid (ETYA), a substrate inhibitor of arachidonic acid metabolism. The release of LDH was increased by Na arachidonate and was inhibited by superoxide dismutase. The release of LDH induced by arachidonic acid was also inhibited by indomethacin, NDGA and ETYA. In conclusion, the present result suggests that arachidonic acid metabolism is involved in the production of reactive oxygen metabolite and plays a contributory role in the genesis of reperfusion injuy of myocardium.
Background: Ischemia-reperfusion injury related to unsuccessful myocardial protection affects postoperative ventricular function and mortality during open-heart surgery. We prospectively compared the effects of administration of histidine-tryptophan-ketoglutarate (HTK) solution and cold blood cardioplegia (CBC) on myocardial protection and clinical outcome in patients undergoing mitral valve surgery. Material and Method: Seventy patients with mitral regurgitation (MR) undergoing mitral valve surgery were randomly divided into the HTK group (n=31) and the CBC group (n=31 ): eight patients were excluded. Perioperative hemodynamics, cardiac medications, pacing, postoperative outcomes and complications were recorded during the hospital stay. All patients received follow-up for at least 6 months postoperatively for morbidity and mortality. Resuか: There were no significant differences in the hemodynamics between the groups during the study period, except for the mean pulmonary artery pressure (MPAP), PCWP and CVP that were lower in the HTK group at 15 min after weaning of CBP. There were no differences for inotropic support and pacing during the 12 hrs postoperatively between the groups. CK-MB values on day 1 and day 2 were $77{\pm}54$ and $41{\pm}23$ for the HTK group and $70{\pm}69$ and $44{\pm}34$ for the CBC group, respectively (p=NS). Postoperative clinical outcomes were similar in both groups for at least 6 months during the follow-up period. Conclusion: These results suggest that the use of HTK solution is as safe as cold blood cardioplegia in terms of myocardial protection.
The purpose of the present study was to evaluate the expression of cardiac marker protein in rabbit cardiac tissue that was exposed to ischemic preconditioning (IPC), or ischemiareperfusion injury (IR) using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). We compared 2DE gels of control (uninjured) cardiac tissue with those of IPC and IR cardiac tissue. Expression of one protein was detected in IR heart tissue, however the protein was not detected in the samples of control and IPC tissue. To further characterize the detected protein molecule, the protein in the 2D gel was isolated and subjected to trypsin digestion, followed by MALDI-MS. The protein was identified as myoglobin, which was confirmed also by Western blot analysis. These results are consistent with previous studies of cardiac markers in ischemic hearts, indicating myoglobin as a suitable marker of myocardial injury. In addition, the present use of multiple techniques indicates that proteomic analysis is an appropriate means to identify cardiac markers in studies of IPC and IR.
Cuong, Cang Van;Kim, Na-Ri;Cho, Hee-Cheol;Kim, Eui-Yong;Han, Jin
The Korean Journal of Physiology and Pharmacology
/
v.8
no.2
/
pp.95-100
/
2004
Ischemic preconditioning (IPC) has been accepted as a heart protection phenomenon against ischemia and reperfusion (I/R) injury. The activation of ATP-sensitive potassium $(K_{ATP})$ channels and the release of myocardial nitric oxide (NO) induced by IPC were demonstrated as the triggers or mediators of IPC. A common action mechanism of NO is a direct or indirect increase in tissue cGMP content. Furthermore, cGMP has also been shown to contribute cardiac protective effect to reduce heart I/R-induced infarction. The present investigation tested the hypothesis that $K_{ATP}$ channels attenuate DNA strand breaks and oxidative damage in an in vitro model of I/R utilizing rat ventricular myocytes. We estimated DNA strand breaks and oxidative damage by mean of single cell gel electrophoresis with endonuclease III cutting sites (comet assay). In the I/R model, the level of DNA damage increased massively. Preconditioning with a single 5-min anoxia, diazoxide $(100\;{\mu}M)$, SNAP $(300\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP) $(100\;{\mu}M)$ followed by 15 min reoxygenation reduced DNA damage level against subsequent 30 min anoxia and 60 min reoxygenation. These protective effects were blocked by the concomitant presence of glibenclamide $(50\;{\mu}M)$, 5-hydroxydecanoate (5-HD) $(100\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer (Rp-8-pCPT-cGMP) $(100\;{\mu}M)$. These results suggest that NO-cGMP-protein kinase G (PKG) pathway contributes to cardioprotective effect of $K_{ATP}$ channels in rat ventricular myocytes.
The increasing use of cardioplegic solution for the reduction of ischemic tissue injury requires that all cardiplegic solution be carefully assessed for any protective or damaging properties. This study describes functional, enzymatic and structural assessment of the efficiency of three cardioplegic solutions (Young & GIK, Bretschneider, and $K^{+}$ Albumin solution) in a Modified Isolated Rat Heart Model of cardiopulmonary bypass and ischemic arrest. Isolated rat heart were subjected to a 2-minute period of coronary infusion with a cold cardioplegic or a noncardioplegic solution immediately before and also at the midpoint of a 60-minute period of hypothermic ($10{\pm}1$. C) ischemic cardiac arrest. The results of this study were as follow: 1. Spontaneous heart beat after ischemic arrest occured 16 seconds later after Langendorff reperfusion in the Young & GIK group (n=6), and 40 second later in the Bretschneider group (n=6) and 6 minute later in the $K^{+}$ Albumin group (n=6), and 16 minute later in the control group (non-cardioplegia). A good recovery state of spontaneous heart beat was shown in the Young & GIK and Bretschneider groups. 2. The percentage of recorveries of heart function at 30 minute after postischemic working heart perfusion were : heart rate $91.6{\pm}3.1$% (P<0.01)m oeaj airtuc oressyre $83{\pm}3$% (P<0.01), coronary flow $70{\pm}8$% (P<0.05) and aortic flow flow rate $39{\pm}9.3$% (P<0.05) in the Young & GIK group. This percentage of recoveries of the Young & GIK group was significantly greater than the control group. In the Bretschneider group, the percentage of recoveries were : heart rate $87.8{\pm}7.5$%(P<0.05), peak aortic pressure $71{\pm}2.3$% (P<0.05) and aortic flow rate $33.2{\pm}6.6$%(P<0.05). hte percentage of recoveries were significantly greater than in the control group. In the $K^{+}$ Albumin group, recoveries of heart function were poor. 3. Total CPK leakage was $131.2{\pm}12.75$IU/30 min/gm. dry weight in the control group, $50.65{\pm}12.75$IU in the Young & GIK gruop, $69.40{\pm}32.21$Iu in Bretschneider group, and $103.65{\pm}15.47$IU in the $K^{+}$ Albumin group during the 30 minute postischemic Langendorff reperfusion. Total CPK leakage was significantly less (P<0.001) in the Young & GIK group, than in the control group. 4. Direct correlatin between percentage recovery of aortic flow rate and total amount of CPK leakage from Myocardium was noticed.(Correlation Coefficient r = 0.76, P<0.001). 5. Mild perivascular edema was the only finding of light microscopic study of myocardium after 60 minute ischemic arrest with cold cardioplegic solutions and hypothermla.
Kim, Su-Cheol;Jo, Gyu-Seok;Park, Ju-Cheol;Yu, Se-Yeong
Journal of Chest Surgery
/
v.30
no.2
/
pp.119-124
/
1997
Using isolated rat heart preparations, we observed the protective effe ts of verapamil cardioplegia on ischemic myocardial injury. Isolated rat hearts were subjected to global ischemia at $25^{\circ}C$ Twenty four isolated Sprague Dawley rat hearts underwent 30 minutes of the retrograde nonworking perfusion with Krebs-Henseleit buffer solution followed by $25^{\circ}C$ cardioplegic solution (St. Thomas'Hospital Cardioplegic Solution) for 60 minutes. Before ischemic arrest, rat hearts were treated with cold cardioplegic solution in control group (n=12) and cold cardioplegic solution with verapamil (1 mg/L) in experimental group (n=12). After 60 minutes of ischemia, hemodynamic and biochemical parameters such as heart rate, left ventricular pressure (LVP), + dp/dt max, coronary flow and creatine phosphokinase (CPK) were measured before giving cardioplegia and 30 minutes after reperfusion. Verapamil group exhibited greater recovery of heart rate, LVP, +dpldt max, coronary flow and CPK than control group (p < 0.05).
Background: It has been reported that the recently developed intermittent antegrade warm blood cardioplegia (IAWBC) has better myocardial protective effects during coronary artery bypass surgery than cold blood cardioplegia or continuos retrograde cold blood cardioplegia. The aim of this study is to evaluate the safety and usefulness of IAWBC by comparing it retrospectively with intermittent retrograde cold blood cardioplegia (lRCBC). Material and Method: From April 2001 to Feb. 2003, fifty seven patients who underwent isolated coronary surgery were divided into two groups (IAWBC vs. IRCBC). The two group had similar demographic and angiographic characteristics. There were no statistical differences in age, sex, Canadian Cardiovascular Society Functional Classification for angina, ejection fraction, and number of grafts. Result: Aortic cross clamping time and total pump time in IAWBC (99$\pm$23 and vs. 126$\pm$32 min) were shorter than those of IRCBC (118$\pm$32 min. and 185$\pm$48 min.)(p<0.05). The reperfusion time (13$\pm$7 min) in IAWBC was shorter than that of IRCBC (62$\pm$109 min.)(p<0.05). CKMB at 12 hours and 24 hours (16$\pm$15 and 9$\pm$13) in IAWBC was lower than that of IRCBC (33$\pm$47 and 17$\pm$26)(p<0.05). The awakening time in IAWBC (2$\pm$1 hour) was shorter than that of IRCBC (4$\pm$3)(p<0.05). The number of spontaneous heart beat recovery in IAWBC (85%) was more than that of IRCBC (35%)(p<0.05). The cardiac index after discontinuing cardio-pulmonary bypass was significantly elevated in the IAWBC group. The prevalence of perioperative myocardial infarction in IAWBC (4%) was lower than that of IRCBC group (20%)(p<0.05). Conclusion: Intermittent antegrade warm blood cardioplegia is a safe, reliable, and effective technique for myocardial protection. It can also provide simpler and economic way than the retrograde cold cardioplegia by shortening of cardiopulmonary bypass time and avoiding retrograde cannulation for coronary sinus.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.