• Title/Summary/Keyword: Myocardial reperfusion

Search Result 149, Processing Time 0.03 seconds

Teucrium polium L. Improved Heart Function and Inhibited Myocardial Apoptosis in Isolated Rat Heart Following Ischemia-Reperfusion Injury

  • Mahmoudabady, Maryam;Talebian, Faezeh Sadat;Zabihi, Narges Amel;Rezaee, Seyed Abdolrahim;Niazmand, Saeed
    • Journal of Pharmacopuncture
    • /
    • v.21 no.3
    • /
    • pp.159-167
    • /
    • 2018
  • Objectives: Myocardial reperfusion is the only logical cure for ischemic heart disease. However, ischemic-reperfusion (I/R) injury is one of the underlying factors facilitating and accelerating the apoptosis in the myocardium. This study set to investigate the impact of Teucrium polium (TP) hydro-alcoholic extract on I/R induced apoptosis in the isolated rat heart. Methods: Isolated rat hearts were classified into six groups. The control samples were subjected to 80 min of perfusion with Krebs-Henseleit bicarbonate (KHB) buffer; in control-ischemia group, after primary perfusion (20 min) the hearts were exposed to global ischemia (20 min) and reperfusion (40 min). Pretreated groups were perfused with $500{\mu}M$ of vitamin C and various TP concentrations (0.5, 1, 2 mg/ml) for 20 min, and then the hearts were exposed to ischemia and reperfusion for 20 min and 40 min, respectively. Cardiodynamic parameters including rate pressure product (RPP), heart rate (HR), the maximum up/down rate of left ventricular pressure (${\pm}dp/dt$), left ventricular developed pressure (LVDP), and coronary artery flow (CF) were achieved from Lab Chart software data. The Bax and BCl-2 gene expressions were measured in heart samples. Results: Hearts treated with TP extract and vit C represented a meaningful improvement in cardiac contractile function and CF. The overexpression of Bcl-2, downregulation of Bax, and improvement of apoptotic index (Bax/Bcl-2) were observed in pretreated TP extract and vit C hearts. Conclusion: The TP extract was found to ameliorate the cardiac function in the reperfused myocardium. Also, it can hinder apoptotic pathways causing cardioprotection.

Apple pectin, a dietary fiber, ameliorates myocardial injury by inhibiting apoptosis in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Kim, Mi Young;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.391-397
    • /
    • 2014
  • BACKGROUND/OBJECTIVE: Myocardial cell death due to occlusion of the coronary arteries leads to myocardial infarction, a subset of coronary heart disease (CHD). Dietary fiber is known to be associated with a reduced risk of CHD, the underlying mechanisms of which were suggested to delay the onset of occlusion by ameliorating risk factors. In this study, we tested a hypothesis that a beneficial role of dietary fiber could arise from protection of myocardial cells against ischemic injury, manifested after occlusion of the arteries. MATERIALS/METHODS: Three days after rats were fed apple pectin (AP) (with 10, 40, 100, and 400 mg/kg/day), myocardial ischemic injury was induced by 30 min-ligation of the left anterior descending coronary artery, followed by 3 hr-reperfusion. The area at risk and infarct area were evaluated using Evans blue dye and 2,3,5-triphenyltetrazolium chloride (TTC) staining, respectively. DNA nicks reflecting the extent of myocardial apoptosis were assessed by TUNEL assay. Levels of cleaved caspase-3, Bcl-2, and Bax were assessed by immunohistochemistry. RESULTS: Supplementation of AP (with 100 and 400 mg/kg/day) resulted in significantly attenuated infarct size (IS) (ratio of infarct area to area at risk) by 21.9 and 22.4%, respectively, in the AP-treated group, compared with that in the control group. This attenuation in IS showed correlation with improvement in biomarkers involved in the apoptotic cascades: reduction of apoptotic cells, inhibition of conversion of procaspase-3 to caspase-3, and increase of Bcl-2/Bax ratio, a determinant of cell fate. CONCLUSIONS: The findings indicate that supplementation of AP results in amelioration of myocardial infarction by inhibition of apoptosis. Thus, the current study suggests that intake of dietary fiber reduces the risk of CHD, not only by blocking steps leading to occlusion, but also by protecting against ischemic injury caused by occlusion of the arteries.

Quantitative Assessment of Myocardial Infarction by In-111 Antimyosin Antibody (In-111-Antimyosin 항체를 이용한 심근경색의 정량적 평가)

  • Lee, Myung-Chul;Lee, Kyung-Han;Choi, Yoon-Ho;Chung, June-Key;Park, Young-Bae;Koh, Chang-Soon;Moon, Dae-Hyuk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 1991
  • Infarct size is a major determinant of prognosis after acute myocardial infarction. Up to date, however, clinically available tests to estimate this size have not been sufficiently accurate. Twelve lead electrocardiogram and wall motion abnormality measurement are not quantitative, and creatine phophokinase (CPK) measurement is inaccurate in the presence of reperfusion or right ventricular infarction. Methods have been developed to localize and size acute myocardial infarcts with agents that are selectively sequestered in areas of myocardial damage, but previously used agents have lacked sufficient specificity. Antibodies that bind specifically only to damaged myocardial cells may resolve this problem and provide an accurate method for noninvasively measuring infarct size. We determined the accuracy with which infarcted myocardial mass can be measured using single photon emission computed tomography (SPECT) and radiolabeled antimyosin antibodies. Seven patients with acute myocardial infarction and one stable angina patient were injected with 2 mCi of Indium-111 labeled antimyosin antibodies. Planar image and SPECT was performed 24 hours later. None of the patients had history of prior infarcts, and none had undergone reperfusion techniques prior to the study, which was done within 4 days of the attack. Planar image showed all infarct patients to have postive uptakes in the cardiac region. The location of this uptake correlated to the infarct site as indicated by electrocardiography in most of the cases. The angina patient, however, showed no such abnormal uptake. Infarct size was determined from transverse slices of the SPECT image using a 45% threshold value obtained from a phantom study. Measured infarct size ranged from 40 to 192 gr. There was significant correlation between the infarct size measured by SPECT and that estimated from serial measurements of CPK (r=0.73, p<0.05). These date suggest that acute myocardial infarct size can be accurately measured from SPECT Indium-111 antimyosin imaging. This method may be especially valuable in situations where other methods are unreliable, such as early reperfusion technique, right ventricular infarct or presence of prior infarcts.

  • PDF

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Han, Suk-Hee;Cho, Tai-Soon;Yoo, Young-Hyo;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.22 no.5
    • /
    • pp.479-484
    • /
    • 1999
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on isolated heart perfusion model. Hearts were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, $37^{\circ}C$) on a Langendroff apparatus. After equilibration, isolated hearts were treated with UDCA 20 to 160 $\mu$M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. After global ischemia (30 min), ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular developed pressure, coronary flow, double product and time to contracture formation) and biochemical (lactate dehydrogenase; LDH) parameters were evaluated. In vehicle-treated group, time to contracture formation was 21.4 min during ischemia, LVDP was 18.5 mmHg at the endpoint or reperfusion and LDH activity in total reperfusion effluent was 54.0 U/L. Cardioprotective effects of UDCA against ischemia/reperfusion consisted of a reduced TTC $(EC_{25}=97.3{\mu}M)$, reduced LDH release and enhanced recovery of cardiac contractile function during reperfusion. Especially, the treatments of UDCA 80 and $160 {\mu}M $ significantly increased LVDP and reduced LDH release. Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage.

  • PDF

An Ultrastructural Study on the Effect of Exogenous $Ca^{2+}$ Stimulation to Ischemic Myocardium during Post-ischemic Reperfusion (재관류시 외인성 칼슘 자극이 허혈 심근에 미치는 영향에 대한 전자현미경적 연구)

  • Kim, Ho-Dirk;Chun, Sang-Bae;Rah, Bong-Jin
    • Applied Microscopy
    • /
    • v.21 no.1
    • /
    • pp.1-20
    • /
    • 1991
  • The effects of exogenous $Ca^{2+}$ stimulation on the post-ischemic myocardial cells were studied using isolated Langendorff-perfused guinea pig hearts. At the starting point of reperfusion, Tyrode solutions, each containing 2.0mM, 4.0mM and 8.0mM $CaCl_2$ respectively, were administered for 2 minutes apart by descending, ascending, or by combined sequences followed by standard Tyrode solution containing 1.0mM $CaCl_2$. The minutes of global ischemia produced reversible but moderate to severe degree of myocardial ultrastructrual changes including focal destruction of sarcolemma, loss of nuclear matrix, clumping and margination of chromatins, mitochondrial swelling, destruction of mitochondrial cristae, shortening of sarcomeres, focal loss of myofibrils, and separation of cell junctions. In spite of reperfusion, the ultrastructure was more severely damaged and irreversible changes such as intracellular fluid accumulation, contracted sarcomeres, mitochondrial destruction, disruption of sarcolemma, loss of nuclear matrix, and separation of cell junction were observed in a large number of cells. In contrast, Tyrode-perfused $Ca^{2+}$-stimulated myocardial cells showed relatively well preserved ultrastucture, except slight changes including focal mitochondrial swelling, widening of T-tubule, and widening of cell junctions, especially at fasciae adherentes. The post-ischemic $Ca^{2+}$-stimulated reperfused myocardial cells produced focal changes such as mitochondrial destruction, disintegration of sarcolemma, widening of T-tubule, and intracellular fluid accumulation with slight variation in degree of changes by the method of $Ca^{2+}$ administration sequence. However, in a large number of the myocardial cells, chromatins were redistributed relatively evenly in the nuclear matrix, mitochondrial cristae were tightly packed, and a considerable number of intramitochondrial granules and glycogen granules reap-pealed. These results indicate that exogenous $Ca^{2+}$ stimulation in the initial period of reperfusion may be beneficial to salvage or to reduce the post-ischemic myocardium from further deleterious changes, and that the beneficial effects may be derived from the reserves of the function of the intracellular $Ca^{2+}$ regulating organelles and/or from the responsiveness of contractile apparatus to $Ca^{2+}$ stimulation.

  • PDF

The Comparison of Protective Effects of Adenosine Included Cardioplegia According to Adenosine Dosage (심정지액 속에 포함된 아데노신의 용량에 따른 심근보호 효과 비교)

  • 유경종;강면식;이교준;임상현;박한기;김종훈;조범구
    • Journal of Chest Surgery
    • /
    • v.31 no.9
    • /
    • pp.837-844
    • /
    • 1998
  • Background: Adenosine is secreted by myocardial cells during myocardial ischemia or hypoxia. It has many beneficial effects on arrhythmias, myocardial ischemia, and reperfusion ischemia. Although many investigators have demonstrated that cardioplegia that includes adenosine shows protective effects in myocardial ischemia or reperfusion injury, reports of the optimal dose of adenosine in cardioplegic solutions vary. We reported the results of beneficial effects of single dosage(0.75 mg/Kg/min) adenosine by use of self-made Langendorff system. But it is uncertain that dosage was optimal. The objective of this study is to determine the optimal dose of adenosine in cardioplegic solutions. Material and Method: We used a self-made Langendorff system to evaluate the myocardial protective effect. Isolated rat hearts were subjected to 90 minutes of deep hypothermic arrest(15$^{\circ}C$) with modified St. Thomas' Hospital cardioplegia including adenosine. Myocardial adenosine levels were augmented during ischemia by providing exogenous adenosine in the cardioplegia. Three groups of hearts were studied: (1) group 1 (n=10) : adenosine - 0.5 mg/Kg/min, (2) group 2(n=10): adenosine -0.75 mg/Kg/min, (3) group 3 (n=10) : adenosine -1 mg/Kg/min. Result: Group 3 resulted in a significantly rapid arrest time of the heart beat(p<0.05) but significantly slow recovery time of the heart beat after reperfusion(p<0.05) compared to groups 1 and 2. Group 2 showed a better percentage of recovery(p<0.05) in systolic aortic pressure, aortic overflow volume, coronary flow volume, and cardiac output compared to groups 1 and 3. Group 1 showed a a better percentage of recovery(p<0.05) in the heart rate compared to the others. In biochemical study of drained reperfusates, CPK and lactic acid levels did not show significant differences in all of the groups. Conclusion: We concluded that group 2 [adenosine(0.75 mg/Kg/min) added to cardioplegia] has better recovery effects after reperfusion in myocardial ischemia and is the most appropriate dosage compared to group 1 and 3.

  • PDF

Pre-and Post-ishemic Changes of the Constituent Enzymes in Isolated Rabbit's Myocardium (허혈전후 적출 가토 심근내의 구성 효소의 변화)

  • 천수봉;전도환;이재성;김송명
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.117-124
    • /
    • 2000
  • Background: Nucleoside transport inhibitor(NTI) Keeps AMP, ADP, ATP levels high in myocytes by inhibiting adenosine cataboilsm so that it may preserve the myocardial contractability during ischemia In this study we investigated the effects of cyclic AMP phosphodiesterase inhibor(C-AMP PDSI) and S-P-nitrobenzyl-6 -thioniosine(NBT; a sort of NIT) on myocadial preservation and changes of constituent enzyme. Material and method: Twenty-six isolated rabbit hearts were perfused with Krebs-Henseleit buffer solution for 20 minutes arrested for 20 minutes and ten reperfused for 30 minutes. The following four groups were prepared and hemodynamic changes coronary effluent lactate dehydrogenase (LDH) a-hydroxybutylic accid(a-HBD) levels and myocardial LDH creatine kinase-MB (CK-MB) adenosine deaminase(ADA) a-HBD levels and myocardial LDH creatine kinase-MB (CK-MB) adenosine deaminase(ADA) a-HBD levels were analysed before and after cardiac arest ; Group I(control) ; the heart was only perfused with K-H ; Group II ; the heart was perfused with K-H including C-AMP PDSI(Amrinone 25mg/L); Group III ; the heart was perfused with K-H including NBT(4.19mg/L) ; Group IV ; the heart was perfused with K-H including C-AMP PDSI + NBT. Result : Left venticular developed pressure(LVDP) at 10 minutes of the equilibrium was significantly higher in group III(72.1$\pm$5.3 mmHg p<0.01) and group III(72$\pm$5.6 mmHg P<0.025) as compared with group I (40.8$\pm$4.7mmHg) and LVDP at 20 minutes of the reperfusion was significantly higher in group II(74$\pm$5.3mmHg p<0.01) and group III(72$\pm$5.6mmHg p<0.025) as compared with group I (44.2$\pm$4.6mmHg). Percentage recovery of LVDP at the reperfusion was the highest in group II(123.3%) Percentage recovery of coronary flow at the equilibrium reperfusion were higher in group II(310%, 270%) group III(230%, 290%) group IV(310%, 280%) as compared with group I (100%) respectively. Myocadial LDH level was significant lower in group IV(33495$\pm$1802 IU/gm p<0.04) as compared with group I(48767$\pm$1421 IU/gm) Myocadial CK-MB level was significant higher in group II(74820$\pm$1421 IU/gm) compared with group I (45450$\pm$1737 IU/gm) Myocadial ADA level was significant higher group IV(1215$\pm$8 IU/gm p<0.05) compared with group I(125$\pm$15 IU/gm) but there was no significant difference between group I and group II ,III, IV in changes of coronary effluent LDH, a-HBD levels. Conclusion: C-AMP PDSI solely appears to have a better effect on myocardial preservation after ischemia than NBT but with no synergistic effect and it could keep CK-MB leve high in myocardial tissues.

  • PDF

Prevention of Ischemic Damage in Working Rat Hearts by Calcium Channel Blocker and Calmodulin Inhibitors (흰쥐심장의 허혈손상에 대한 Calcium 통로봉쇄제와 Calmodulin 억제제의 예방효과에 대한 연구)

  • 성시찬
    • Journal of Chest Surgery
    • /
    • v.22 no.6
    • /
    • pp.901-913
    • /
    • 1989
  • This study was investigated under the postulation that activation of intracellular calcium- calmodulin complex during ischemia-reperfusion leads to myocardial injury. The protective effects of calcium channel blocker, diltiazem and calmodulin inhibitors, trifluoperazine, flunarizine and calmidazolium from ischemic injury in rat hearts were observed by using Langendorff apparatus when the antagonists were infused for 3 min in the beginning of ischemia. Thereby, an increase in resting tension developed during 30-min ischemia was analyzed with regard to [1] the degree of cardiac functional recovery following 60-min reperfusion, [2] changes in biochemical variables evoked during 30-min ischemia. The results obtained were as follows: l. In the ischemic group, the resting tension was increased by 4.1*0.2 g at 30-min ischemia. However, the increase in resting tension was markedly reduced not only by pretreatment with diltiazem [3.3 p M] but also with calmodulin inhibitors, trifluoperazine [3.3 p M], flunarizine [0.5 p M] and calmidazolium [0.5 p M], respectively. 2. Recovery of myocardial contractility, +dF /dt and coronary flow were much reduced when evoked by reperfusion in the ischemic group. These variables were significantly improved either by pretreatment with diltiazem or with calmodulin inhibitors. 3. The resting tension increment evoked during ischemia was significantly inversely correlated with the degree of cardiac function recovered during reperfusion. 4. Following 30-min ischemia, the production of malondialdehyde and release of lysosomal enzyme were much increased in association with a decrease in creatine kinase activity. 5. The increases in malondialdehyde production and release of free lysosomal enzyme were suppressed by pretreatment with calmodulin inhibitors as well as diltiazem. Likewise, the decrease of creatine kinase activities was prevented by these calcium antagonists. With these results, it is indicated that a increase in resting tension observed during ischemia has an inverse relationship to the cardiac function recovered following reperfusion, and further, the later may be significantly dependent on the degree of biochemical alterations occurred during ischemia such as decrease in creatine kinase activity, increased production of malondialdehyde and increased release of free lysosomal enzyme. Thus it is concluded that calmodulin plays a pivotal role in the process of ischemic injury.

  • PDF

Cardioprotective Potency of the Antioxidante Amifostine in the Ischemic and Reperfused Isolated Rat Heart (항산화제 Amifostine의 허혈 및 재관류시 흰쥐 적출심장의 심근 보호기능)

  • 허강배;천수봉;김송명
    • Journal of Chest Surgery
    • /
    • v.31 no.9
    • /
    • pp.845-854
    • /
    • 1998
  • Background: S-2-(3 aminoprophlamino) ethylphosphorothioic acid(WR-2721) is one of the radical scavenging thiols. We tested its protective effects in the reperfused heart. Material and Method: The experimental setup was the constant pressure Langendorffs perfusion system. We investigated the radical scavenging properties of this compound in isolated rat hearts which were exposed to 20 minutes ischemia and 20 minutes reperfusion. Four experimental groups were used:group I, control, Amifostine 50 mg(1 mL) peritoneal injection 30 minutes before ischemia(group II), Amifostine 10 mg(0.2 mL) injection during ischemia through coronary artery(group III),and Amifostine 50 mg(1 mL) peritoneal injection 2 hrs before ischemia(group IV). The experimental parameters were the levels of latate, CK-MB, and adenosine deaminase(ADA) in frozen myocardium, the quantity of coronary flow,and left ventricular developed pressure, and it's dp/dt. Statistical analysis was performed using repeated measured analysis of variance and student t-test. Result: The coronary flow of group II and IV were less than group I and III at equilibrium state but recovery of coronary flow at reperfusion state of group II, III, and IV were more increased compared with group I. The change of systolic left ventricular devoloping pressure of group II and IV were less than control group at equilibrium state, which seemed to be the influence of the pharmacological hypotensive effect of amifostine. But it was higher compared with group I at reperfusion state. The lactic acid contents of group II were less than control group in frozen myocardium.(Group I was 0.20 0.29 mM/g vs Group II, which was 0.10 0.11 mM/g). The quantity of CK-MB in myocardial tissue was highest in group IV (P=0.026 I: 120.0 97.8 U/L vs IV: 242.2 79.15 U/L). The adenosine deaminase contents in the coronary flow and frozen myocardium were not significantly different among each group. Conclusion: Amifostine seemed to have significant cardioprotective effect during ischemia and reperfusion injuries of myocardium.

  • PDF

The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts

  • Son, Euncheol;Lee, Dongju;Woo, Chul-Woong;Kim, Young-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2020
  • An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.