• Title/Summary/Keyword: Myocardial infarction biomarker

Search Result 6, Processing Time 0.224 seconds

Substance P and Neuropeptide Y as Potential Biomarkers for Diagnosis of Acute Myocardial Infarction in Korean Patients

  • Han, Hyojeong;Seo, Hong Seog;Jung, Byung Hwa;Woo, Kyoungja;Yoo, Young Sook;Kang, Min-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.158-164
    • /
    • 2014
  • Substance P and neuropeptide Y were discovered as early diagnostic biomarkers of acute myocardial infarction in Korean patients and confirmed using enzyme-linked immunosorbent assay (ELISA). We screened 12 peptides from the sera of Korean acute myocardial infarction (AMI) patients and detected 3 peptides (neuropeptide Y, substance P, and N-terminal pro-B-type natriuretic peptide) to be elevated from patients' sera by liquid chromatography mass/mass spectrometry. The elevated concentration of 3 peptides was confirmed by ELISA. The screening results revealed the substance P, neuropeptide Y, and pro-B-type natriuretic peptide (47-76) concentrations were higher in patients' sera than in healthy controls. The sensitivity and specificity of substance P for AMI diagnostic marker were 80% and 83%, respectively, and those of neuropeptide Y were 87% and 90%, respectively compared to healthy controls. These results suggest that substance P and neuropeptide Y could be used as early diagnostic biomarkers in patients with AMI.

Discovery of 14-3-3 zeta as a potential biomarker for cardiac hypertrophy

  • Joyeta Mahmud;Hien Thi My Ong;Eda Ates;Hong Seog Seo;Min-Jung Kang
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.341-346
    • /
    • 2023
  • Acute myocardial infarction (AMI) is a multifaceted syndrome influenced by the functions of various extrinsic and intrinsic pathways and pathological processes, which can be detected in circulation using biomarkers. In this study, we investigated the secretome protein profile of induced-hypertrophy cardiomyocytes to identify next-generation biomarkers for AMI diagnosis and management. Hypertrophy was successfully induced in immortalized human cardiomyocytes (T0445) by 200 nM ET-1 and 1 μM Ang II. The protein profiles of hypertrophied cardiomyocyte secretomes were analyzed by nano-liquid chromatography with tandem mass spectrometry and differentially expressed proteins that have been identified by Ingenuity Pathway Analysis. The levels of 32 proteins increased significantly (>1.4 fold), whereas 17 proteins (<0.5 fold) showed a rapid decrease in expression. Proteomic analysis showed significant upregulation of six 14-3-3 protein isoforms in hypertrophied cardiomyocytes compared to those in control cells. Multi-reaction monitoring results of human plasma samples showed that 14-3-3 protein-zeta levels were significantly elevated in patients with AMI compared to those of healthy controls. These findings elucidated the role of 14-3-3 protein-zeta in cardiac hypertrophy and cardiovascular disorders and demonstrated its potential as a novel biomarker and therapeutic strategy.

Real-time Highly Sensitive Measurement of Myocardial Infarction Biomarkers Using Silicon-based Ellipsometric Biosensors (실리콘 기반 타원편광계식 바이오센서를 이용한 심근경색 생체표지자의 실시간 초고감도 진단 농도 측정)

  • Min, Yoon Gi;Cho, Hyun Mo;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • We report highly sensitive detection of myocardial infarction biomarkers, such as myoglobin and cTnI, within several hundred seconds using a rotating-analyzer ellipsometer and a biosensor with biochips fabricated on a $SiO_2$-coated tilted silicon substrate. We choose the running buffer to be pure phosphate-buffered saline (PBS) or 10% mixed human serum. When we choose the running buffer to be pure PBS, we obtain diagnostic densities of pure myocardial infarction biomarkers of up to 1 ng/ml and 5 pg/ml respectively. Meanwhile, when we use PBS with 10% human serum, the measured densities of myoglobin and cTnI were up to 1 ng/mL and 1 pg/mL respectively. The measured diagnostic densities are less than 1/15 and 1/80 (in cases of myoglobin and cTnI respectively) of those referenced by the World Health Organization.

Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

  • Zhang, Jianying;Gao, Caihua;Meng, Meijuan;Tang, Hongxia
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by $H_2O_2$. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ($^*p<0.05$). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide ($H_2O_2$) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the $H_2O_2$-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ($^{**}p<0.01$), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.

Changes of the Plasma Atrial Natriuretic Peptide during Myocardial Infarction in Rats (흰쥐 심근경색 모델에서 혈장 Atrial Natriuretic Peptide의 변화)

  • Ahn, Dong-Choon;Kim, In-Shik
    • Journal of Veterinary Clinics
    • /
    • v.29 no.2
    • /
    • pp.148-153
    • /
    • 2012
  • Atrial natriuretic peptide (ANP) is associated with the variety of disorders of myocardial function. The effect, however, of myocardial infarction (MI) on ANP has not been fully described. Thus, this study investigated the effect of experimental MI, induced by left coronary artery ligation, on ANP secretion. Male Sprague-Dawley rats aged 60 d underwent ligation of the left anterior descending coronary artery to induce MI and were compared with a group that underwent a sham operation. Rats of sham operation had a similar procedure without having the suture tightened around the coronary artery. Animals were sacrificed at 1, 3, 6, 12, and 18 h or 1, 3, 5, 7, 14, and 30 d after the procedure. MI size was assessed by planimetry and perimetry, and plasma ANP levels were determined by radioimmunoassay. Mean infarct size was 39.6-44.5% of the left ventricle after coronary occlusion in experimental groups. No significant differences were observed in infarct size among groups. In contrast, the concentration of plasma ANP was significantly higher at 1, 3, 6, 12, 18, and 24 h after left coronary artery ligation than in sham animals. This parameter, however, did not differ significantly at 3, 5, 7, 14, and 30 d after ligation compared with sham-ligated controls. These results demonstrate that plasma ANP levels are markedly increased in the early phase of MI in the male rat and can be a useful biomarker for diagnosis in acute MI.