• Title/Summary/Keyword: Myoblasts

Search Result 143, Processing Time 0.034 seconds

Methanol extract of Myelophycus caespitosus ameliorates oxidative stress-induced cytotoxicity in C2C12 murine myoblasts via activation of heme oxygenase-1

  • Cheol Park;Hyun Hwangbo;Min Ho Han;Jin-Woo Jeong;Suengmok Cho;Gi-Young Kim;Hye-Jin Hwang;Yung Hyun Choi
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Myelophycus caespitosus, a brown alga belonging to genus Myelophycus, has been traditionally used as a food and medicinal resource in Northeastern Asia. However, few studies have been conducted on its pharmacological activity. In this study, we evaluated whether methanol extract of M. caespitosus (MEMC) could protect against oxidative damage caused by hydrogen peroxide (H2O2) in C2C12 murine myoblasts. Our results revealed that MEMC could suppress H2O2-induced growth inhibition and DNA damage while blocking the production of reactive oxygen species. In H2O2-treated cells, cell cycle progression was halted at the G2/M phase, accompanied by changes in expression of key cell cycle regulators. However, these effects were attenuated by MEMC. In addition, we found that MEMC protected cells from induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, MEMC enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) and expression and activity of heme oxygenase-1 (HO-1) in H2O2-treaetd C2C12 myoblasts. However, such anti-apoptotic and cytoprotective effects of MEMC were greatly abolished by HO-1 inhibitor, suggesting that MEMC could increase Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress.

Effect of Chungsimyeonjaeum on myocardiac cell injury in mouse myoblast $C_2Cl_{12}$ cells (청심연자음(淸心蓮子飮)이 Mouse유래 $C_2Cl_{12}$세포주에서 심근세포 손상의 보호 효과)

  • Lee, Sang-Heon;Park, Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.27 no.3 s.67
    • /
    • pp.26-37
    • /
    • 2006
  • Determination and differentiation of cells in the skeletal muscle lineage is positively regulated by cell-cell contact. Differentiation proteins proposed to mediate this effect include both classical MyoD and MEF members; potential interactions between the promyogenic activities of these classes of protein, however, are unknown. We show here that MyoD and MEF, two promyogenic family members that relate to each other in a cis fashion, form interactions with MyoD and MEF. These proteins contain myosin-heavy chainsand are enriched at sites of cell-cell contact between myoblasts. Therefore, in differentiation of MyoD and MEF from Chungsimyeonjaeum interact dependently, suggesting that the interactions occur in a cis fashion; consistent with this conclusion, MyoD-mediated differentiation is required for myoblasts to occur by Chungsimyeonjaeum. Inhibition in myoblasts of a MyoD by Staurosporine in its ability to associate with MEF interferes with differentiation as assessed by morphological and transcription levels, suggesting that this interaction is functionally important in myogenesis. Also, some of the differentiation-mediated proteins that are required for myogenesis seem to be based on interdependent activities of the promyogenic classical smad-subfamily.

  • PDF

Leukotriene B4 Regulates Proliferation and Differentiation of Cultured Rat Myoblasts via the BLT1 Pathway

  • Sun, Ru;Ba, Xueqing;Cui, Lingling;Xue, Yan;Zeng, Xianlu
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.403-408
    • /
    • 2009
  • Skeletal muscle regeneration is a highly orchestrated process initiated by activation of adult muscle satellite cells. Upon muscle injury, the inflammatory process is always accompanied by muscle regeneration. Leukotriene $B_4$ is one of the essential inflammatory mediators. We isolated and cultured primary satellite cells. RT-PCR showed that myoblasts expressed mRNA for $LTB_4$ receptors BLT1 and BLT2, and $LTB_4$ promoted myoblast proliferation and fusion. Quantitative real-time PCR and immunoblotting showed that $LTB_4$ treatment expedited the expression process of differentiation markers MyoD and M-cadherin. U-75302, a specific BLT1 inhibitor, but not LY2552833, a specific BLT2 inhibitor, blocked proliferation and differentiation of myoblasts induced by $LTB_4$, which implies the involvement of the BLT1 pathway. Overall, the data suggest that $LTB_4$ contributes to muscle regeneration by accelerating proliferation and differentiation of satellite cells.

Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts (쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할)

  • Oh, Myung-Ju;Kim, So-Hyeon;Kim, Ji-Hyun;Jhun, Byung H.
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.772-782
    • /
    • 2020
  • Skeletal muscle differentiation or myogenesis is important to maintain muscle mass and metabolic homeostasis. Muscle-specific microRNAs (miRNAs) are known to play a critical role in skeletal myogenic differentiation. In this study, we examined the expression profiling of miRNAs during myogenic differentiation in rat L6 myoblasts using rat miRNA microarrays. We identified the upregulated expression of miR-128 as well as several well-known myogenic miRNAs, including miR-1, miR-133b, and miR-206. We additionally confirmed the increased expression of miR-128 observed on microarray through quantitative real-time PCR (qRT-PCR), which showed similarly upregulated expression of both primary miR-128 and mature miR-128, consistent with the microarray findings. Furthermore, transfection of miR-128 into rat L6 myoblasts induced gene expression of myogenic markers such as muscle creatine kinase (MCK), myogenin, and myosin heavy chain (MHC). Protein expression of MHC was increased as well. Inhibition of miR-128 by inhibitory peptide nucleic acids (PNAs) blocked the expression of those myogenic markers. In addition, the transfection of miR-128 into rat L6 myoblasts enhanced the phosphorylation of Erk and Akt proteins stimulated by insulin, while simultaneously reversing the inhibited phosphorylation of Erk and Akt due to insulin resistance. These findings suggest that miR-128 may play important roles in myogenic differentiation and insulin signaling.

Protective Effects of Ethanol Extract Mixtures of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus against Oxidative Stress-induced Damage in C2C12 Murine Myoblasts (C2C12 근아세포의 산화적 손상에 대한 고삼, 감초 및 백선피 복합 추출물의 보호효과)

  • Choi, Eun Ok;Hwang-Bo, Hyun;Kim, Min Young;Son, Da Hee;Jeong, Jin Woo;Park, Cheol;Hong, Su Hyun;Kim, Min Ju;Lee, Ji Young;Shin, Su Jin;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.179-191
    • /
    • 2017
  • Objectives : Increased oxidative stress by reactive oxygen species (ROS) has been suggested as a major cause of muscle fatigue. Although several studies have demonstrated the various biological properties of Sophora flavescens Aiton, Glycyrrhiza uralensis Fischer and Dictamnus dasycarpus Turcz, but the antioxidative potentials have not been clearly demonstrated. The present study was designed to investigate the protective effects of their water and ethanol extract mixtures (medicinal herbal mixtures, MHMIXs) on hydrogen peroxide ($H_2O_2$)-induced cell damage and apoptosis in C2C12 myoblasts. Methods : Cytotoxicity was assessed by an MTT assay. Quantitative evaluation of apoptosis induction and ROS production was evaluated by flow cytometry analysis. Expression levels of apoptosis regulatory and DNA-damage proteins were detected by Western blotting. Result : The inhibition of $H_2O_2$-induced cell proliferation was effectively blocked in extracts of 3: 1: 1 (EMHMIXs-1) or 2: 2: 1 (EMHMIXs-2) of S. flavescens, G. uralensis and D. dasycarpus Turcz, ethanol extracts from various complex extracts in C2C12 myoblasts. EMHMIXs-1 and EMHMIXs-2 also effectively attenuated $H_2O_2$-induced C2C12 cell apoptosis, which was associated with the restoration of the upregulation of Bad and death receptor 4, and downregulation of XIAP and cIAP-1 induced by $H_2O_2$. In addition, these herbal mixtures significantly blocked the $H_2O_2$-induced ROS generation and phosphorylation of $p-{\gamma}H2A.X$, which suggests that they can prevent $H_2O_2$-induced cellular DNA damage. Conclusions : The results suggest that EMHMIXs-1 and EMHMIXs-2 could block the DAN damage and apoptosis of C2C12 myoblasts by oxidative stress through blocking ROS generation.

Antioxidant Activities and Protective Effects of Hot Water Extract from Curcuma longa L. on Oxidative Stress-Induced C2C12 Myoblasts (강황 열수 추출물의 항산화 활성 및 C2C12 Myoblasts의 산화적 손상에 대한 보호 효과)

  • Jeong, Hye-Jin;Kim, Shintae;Park, Jeongjin;Kim, Ki Hong;Kim, Kyungmi;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1408-1413
    • /
    • 2017
  • The aim of this study was to investigate the antioxidant activities and protective effects of hot water extract from Curcuma longa L. (CLW) on oxidative stress-induced C2C12 myoblasts. Antioxidant activities of CLW were evaluated based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities. Protective effects of CLW on oxidative stress-induced C2C12 myoblasts were determined based on cytotoxicity, $H_2O_2$ protective activity, and intracellular reactive oxygen species (ROS) level. DPPH and ABTS radical scavenging activities represented by $SC_{50}$ were $188.5{\pm}3.0{\mu}g/mL$ and $92.0{\pm}0.9{\mu}g/mL$, respectively. Using C2C12 myoblasts, CLW treatment increased cell viability against oxidative stress-induced cell death. Further, CLW treatment reduced the intracellular ROS level in cells treated with $H_2O_2$. These results suggest that CLW might have the capability to protect oxidative stress-induced C2C12 myoblasts.

Studies on the differentiation of Myoblasts: Molecular Cloning of differentiation related Genes in the Chick Embryonic Myoblasts by Differential Hybridization. (근세포 분화에 관한 연구: 차별 혼성화 스크리닝법에 의한 근원세포 분화 관련 유전자의 클로닝)

  • 강봉석;장세헌유병제양재섭
    • The Korean Journal of Zoology
    • /
    • v.37 no.2
    • /
    • pp.240-248
    • /
    • 1994
  • 골격근 세포는 미분화 단핵 근원세포로부터 신장과 융합을 거쳐 다핵 횡문근섬유로 분화되어 가며 동시에 근특이 유전자의 발현이 선택적으로 일어난다. 본 연구에서는 계배 배양 근원세포의 분화동안 유전자 발현 조절 양상에 대한 연구를 위해, 계배 근원세포를 72시간 배양한 근섬유로부터 CDNA 라이브러리를 제작하였다. 이 cDNA 라이브러리를 미분화 단핵 근원세포(배양 36시간)와 분화된 다핵 근섬유(배양 72시간)의 poly(A)+ RNA 주형에서 합성된 [32P〕cDNA를 Probe로 사용한 differential plaque hybridization 방법으로 스크리닝하였다 분화된 다핵 근섬유 CDNA probe에 강한게 흔성화되는 CDNA clone을 선별하여 클로닝하였다. 선별한 CDNA clone 들 중 하나는 약 1.3 Kb 크기의 삽입절편을 갖고 있는 것으로 나타났고, 이 CDNA를 probe로 사용하여 northern blotting 한 결과, 이 CDNA엑 대한 유전자는 미분화 단핵 근원세포에서 분화된 다핵 근섬유로 분화가 진행됨에 따라 유전자 산물인 RNA 양이 증가되는 것으로 나타났다 또한 이 1.3 Kb CDNA에 대한 RNA의 크기는 약 2 7 Kb로 확인되었다.

  • PDF