• 제목/요약/키워드: Myoblasts

검색결과 143건 처리시간 0.026초

심근세포로의 분화에 관여하는 새로운 생리활성 단백질 SPP2의 발굴 (Identification and Characterization of Secreted Phosphoprotein 2 as a Novel Bioactive Protein for Myocardial Differentiation)

  • 전세진
    • 생명과학회지
    • /
    • 제33권1호
    • /
    • pp.64-72
    • /
    • 2023
  • 심장 발생과정에 관여하는 주요 전사인자들의 기능에 대한 규명 등의 발전에도 불구하고 줄기 세포에서 매우 효율적인 심근 세포로의 분화를 촉진하는 새로운 생체 활성 분자를 찾는 것이 여전히 필요하다. 마우스배아줄기세포(mESC) 유래 심근세포의 Illumina 발현 마이크로어레이 데이터를 분석하였다. 미분화 mESCs와 비교하여 mESC 유래 심근세포에서 4배 이상 유전자 발현이 증가한 276개 유전자가 스크리닝되었다. Secreted phosphoprotein 2 (Spp2)는 후보물질 중 하나이며 bone morphogenetic protein 2 (BMP2)에 대한 슈도수용체로서 BMP2 신호 전달을 억제하는 것으로 알려져 있다. 그러나 심근 형성과의 연관성은 알려진 바 없다. 우리는 mESC 세포주인 TC-1/Kh2와 E14를 이용하여 기능성 심근세포로 분화하는 동안 Spp2 발현이 증가함을 검증하였다. 흥미롭게도, Spp2 분비는 배아체(embryoid body, EBs) 형성 후 3일차에 일시적으로 증가했는데, 이는 Spp2의 분비가 ESCs의 심근세포로의 분화에 관여함을 시사한다. Spp2의 기능을 분석하기 위해, 우리는 BMP2를 처리하면 분화 경로를 근모세포에서 골모세포로 전환되는 특성을 가진 C2C12 마우스 근모세포 세포주를 사용하여 실험을 수행하였다. mESCs의 분화와 유사하게, Spp2의 전사는 C2C12 근모세포가 근관으로 분화됨에 따라 증가하였다. 특히, 분화 초기 단계에서 Spp2의 세포외 분비가 극적으로 증가하였다. 또한, Spp2-Flag 재조합 단백질로 처리하면 C2C12 근모세포의 근관으로의 분화가 촉진되었다. 종합하면, ESCs를 심근 세포로 분화시키는 새로운 생체 활성 단백질로 Spp2를 제안한다. 이것은 심근형성의 분자 경로를 이해하고 허혈성 심장질환에 대한 줄기세포 요법의 실험적 또는 임상적 발전을 촉진하는 역할을 할 것으로 기대한다.

C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할 (Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts)

  • 김달아;공경혜;조현정;이미란
    • 대한임상검사과학회지
    • /
    • 제55권3호
    • /
    • pp.184-194
    • /
    • 2023
  • 골격근은 대사, 열기반 온도 조절, 그리고 전반적인 체내 균형을 위해 필수적인 조직이고 근발생(myogenesis)이라는 다단계 과정을 거쳐서 근관세포를 형성한다. p-아니스알데하이드(p-anisaldehyde, PAA) (4-메톡시벤잘데하이드)는 아니스 씨에서 추출된 에센셜 오일의 주성분이지만, 골격근에서의 기능은 아직까지 알려져 있지 않다. 따라서, 우리는 마우스 C2C12 근육모세포를 이용하여 근육분화가 PAA에 의해 영향을 받는지를 연구하였다. C2C12 근육모세포의 분화를 유도하기 위해 이 세포를 분화배지에서 5일동안 배양하였고, 매일 PAA (50 또는 200 ㎍/mL)를 포함하는 새로운 배지로 교체하였다. 대조군으로서 PAA가 포함되지 않은 배지를 사용하였다. 우리는 분화시작 후 1, 3, 5일째에 근관세포의 길이와 지름을 측정함으로써 PAA가 근관 형성에 미치는 영향을 평가하였고, quantitative real-time polymerase chain reaction 분석을 통해 PAA가 근육 표지인자(myoblast determination protein 1, myogenin, myocyte enhancer factor 2C, muscle creatine kinase, 및 myosin heavy chain)와 근육위축 관련 유전자(atrogin-1과 muscle ring finger-1 [MuRF-1])의 발현에 미치는 영향을 분석하였다. 또한, 주요 근육형성 키나아제인 protein kinase B (Akt)의 인산화를 웨스턴 블롯을 이용해 관찰하였다. 그 결과 PAA가 더 작고 얇은 근관 형성을 유의하게 유발하며 근육 표지인자의 발현을 감소시킨다는 것을 확인하였다. 또한, atrogin-1과 MuRF-1의 발현이 PAA에 의해서 감소하였는데, 이는 Akt 인산화의 감소와 일치하는 결과이다. 결론적으로, 본 연구결과는 PAA가 Akt 인산화와 활성화를 감소시킴으로써 C2C12 세포에서의 근육 분화를 억제하는 역할을 한다는 것을 증명한다.

S100 and p65 expression are increased in the masseter muscle after botulinum toxin-A injection

  • Park, Young-Wook;Kim, Seong-Gon;Jo, You-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.33.1-33.6
    • /
    • 2016
  • Background: The purpose of this study was to compare the expression levels of p65 and S100 in the rat masseter muscle after the injection of different concentrations of botulinum toxin-A (BTX-A). Methods: We injected either 5 or 10 U of BTX-A into both masseter muscle of rats. As a control group, the same volume of saline was injected. After 14 days, the animals were sacrificed. Subsequently, a biopsy and immunohistochemical staining of the samples were performed using a p65 or S100 antibody. Results: The cross-sectional area of each myofibril was significantly reduced by BTX-A injection (P < 0.001). The expression of p65 and S100 increased significantly with increasing concentrations of BTX-A (P < 0.001). Conclusions: The injection of BTX-A into the masseter muscle induced muscle atrophy. Subsequently, p65 and S100 expression in myoblasts were increased for the protection of muscle cells.

Some Motifs Were Important for Myostatin Transcriptional Regulation in Sheep (Ovis aries)

  • Du, Rong;An, Xiao-Rong;Chen, Yong-Fu;Qin, Jian
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.547-553
    • /
    • 2007
  • Many motifs along the 1.2 kb myostatin promoter (MSTNpro) in sheep have been found by the MatInspecter program in our recent study. To further verify the role of the motifs and better understand the transcriptional regulation mechanism of the myostatin gene in sheep, the reporter gene EGFP (enhanced green fluorescent protein) was selected and the wild-type (W) vector MSTNPro$^W$-EGFP or motif-mutational (M) vector MSTNPro$^M$-EGFP were constructed. The transcriptional regulation activities were analyzed by detecting the fluorescence strength of EGFP in C2C12 myoblasts transfected with the vectors. The results showed that E-box (E) 3, E4, E5 and E7, particularly E3, E5 and E7, had important effects on the activity of the 1.2 kb sheep myostatin promoter. In addition, we also detected several other important motifs such as MTBF (muscle-specific Mt binding factor), MEF2 (myocyte enhancer factor 2), GRE (glucocorticoid response elements) and PRE (progesterone response elements) along the sheep myostatin promoter by the mutational analysis.

Characterization of Protein Kinases Activated during Treatment of Cells with Okadaic Acid

  • Bogoyevitch, Marie A.;Thien, Marilyn;Ng, Dominic C.H.
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.517-525
    • /
    • 2001
  • Six renaturable protein kinases that utilize the myelin basic protein (MBP) as a substrate were activated during prolonged exposure of cardiac myocytes to okadaic acid (OA). We characterized the substrate preference and activation of these kinases, with particular emphasis on 3 novel kinases-MBPK-55, MBPK-62 and MBPK-87. The transcription factors c-Jun, Elk, ATF2, and c-Fos that are used to assess mitogen-activated protein kinase activation were all poor substrates for these three kinases. MAPKAPK2 was also not phosphorylated. In contrast, Histone IIIS was phosphorylated by MBPK-55 and MBPK-62. These protein kinases were activated in cultured cardiac fibroblasts, H9c2 cardiac myoblasts, and Cos cells. High concentrations (0.5 to $1\;{\mu}M$) of OA were essential for the activation of the protein kinases in all of the cell types examined, whereas calyculin A [an inhibitor of protein phosphatase 1 (PP1) and PP2A], cyclosporin A (a PP2B inhibitor), and an inactive OA analog all failed to activate these kinases. The high dose of okadaic acid that is required for kinase activation was also required for phosphatase inhibition, as assessed by immunoblotting whole cell lysates with anti-phosphothreonine antibodies. A variety of chemical inhibitors, including PD98059 (MEK-specific), genistein (tyrosine kinase-specific) and Bisindolylmaleimide I (protein kinase C-specific), failed to inhibit the OA activation of these kinases. Thus, MBPK-55 and MBPK-62 are also Histone IIIS kinases that are widely expressed and specifically activated upon exposure to high OA concentrations.

  • PDF

The role of calpain in skeletal muscle

  • Pandurangan, Muthuraman;Hwang, Inho
    • Animal cells and systems
    • /
    • 제16권6호
    • /
    • pp.431-437
    • /
    • 2012
  • Calpains are a class of proteins that belong to the calcium-dependent, non-lysosomal cysteine proteases. There are three major types of calpains expressed in the skeletal muscle, namely, ${\mu}$-calpain, m-calpain, and calpain 3, which show proteolytic activities. Skeletal muscle fibers possess all three calpains, and they are $Ca^{2+}$-dependent proteases. The functional role of calpains was found to be associated with apoptosis and myogenesis. However, calpain 3 is likely to be involved in sarcomeric remodeling. A defect in the expression of calpain 3 leads to limb-girdle muscular dystrophy type 2A. Calpain 3 is found in skeletal muscle fibers at the N2A line of the large elastic protein, titin. A substantial proportion of calpain 3 is activated 24 h following a single bout of eccentric exercise. In vitro studies indicated that calpain 3 can be activated 2-4 fold higher than normal resting cytoplasmic [$Ca^{2+}$]. Characterization of the calpain system in the developing muscle is essential to explain which calpain isoforms are present and whether both ${\mu}$-calpain and m-calpain exist in differentiating myoblasts. Information from such studies is needed to clarify the role of the calpain system in skeletal muscle growth. It has been demonstrated that the activation of ubiquitous calpains and calpain 3 in skeletal muscle is very well regulated in the presence of huge and rapid changes in intracellular [$Ca^{2+}$].

Identification of the Gene Responsible for Chicken Muscular Dystrophy

  • Matsumoto, Hirokazu;Sasazaki, Shinji;Mannen, Hideyuki
    • 한국가금학회지
    • /
    • 제38권2호
    • /
    • pp.145-154
    • /
    • 2011
  • By a series of positional cloning, we successfully narrowed down the AM candidate region to approximately 1.2 Mbp on GGA2q including 7 functional genes. Subsequently, we identified WWP1 gene as the most likely AM candidate by sequence comparison. The amino acid sequence around the candidate mutation was highly conserved among tetrapods, suggesting that WWP1 is the causative gene of chicken muscular dystrophy. Transfection of mutated WWP1 gene into $C_2C_{12}$ myoblasts disrupted muscle differentiation process. The abnormal muscle differentiation is a characteristic of chicken muscular dystrophy, so we could demonstrate a part of phenotype of the disease. Furthermore, western blotting revealed that accumulation of caveolin-3 protein is limited in damaged muscle of muscular dystrophic chicken, suggesting caveolin-3 may be associated with the pathological change of the disease. We could conclude that WWP1 gene is the responsible one for chicken muscular dystrophy from these results, but the mechanism leading the onset should be clarified in the future. The information will contribute to the study of chicken muscular dystrophy and the corresponding human dystrophies.

NF-kB Activation by Disruption of Microtubule Array during Myogenesis of L6 Cells

  • Sangmyung Rhee;Lee, Kun-Ho;Hyockman Kwon
    • Animal cells and systems
    • /
    • 제1권1호
    • /
    • pp.63-69
    • /
    • 1997
  • We have previously reported that NF-kB is involved in the regulation of nitric oxide synthase gene expression during differentiation of chick embryonic myoblasts. However, how NF-kB is timely activated during myogenesis remains elusive. One of the most prominent events in myogenesis is myoblast membrane fusion, which is accompanied with massive cytoskeletal reorganization. Here we show that the activity of NF-kB markedly increases in L6 rat myogenic cells that have just initiated morphological changes by treating nocodazole, a microtubule-disrupting agent. Furthermore, the induction of NF-kB activation was closely correlated with the myoblast fusion. In addition, a variety of agents that disrupt microtubules stimulated the myoblast fusion as well as the induction of NF-kB activation. In contrast, taxol, a microtubule-stabilizing agent, suppressed the induction of NF-kB activation and inhibited spontaneous differentiation of L6 cells as well. In addition, we found that the NF-KB in the cells consists of p50/p65 heterodimers. These results support the idea that reorganization of microtubule at early stages of differentiation plays a role as a signal for NF-KB activation during myogenesis.

  • PDF

培養 鷄胚 筋細胞分化에 미치는 紫外線의 영향 (Effects of Ultraviolet Irradiation on the Differentiation of Cultured Chicken Pectoralis Muscle Cells)

  • Chung, Hae-Moon;Nham, Sang-Uk
    • 한국동물학회지
    • /
    • 제24권4호
    • /
    • pp.189-200
    • /
    • 1981
  • 12일간 배양한 계배에서 떼어낸 근모세포에 자외선을 조사하면 근육 분화에 심한 변화를 유발시킬수 있다. 본 연구에서는 자외선이 세포분열 및 근섬유로의 전환, 근모세포와 근섬유의 형태에 미치는 영향을 조사하였다. 자외선을 받은 세포들은 크기가 작아지고 또 적은 수의 세포들이 근섬유 형성에 참여하기 때문에 근섬유의 직경이 좁아지고 길이 또한 작아진다. 자외선이 세포분열과 세포의 융합에 미치는 영향은 배양을 시작한 후 이른 시기에 조사할수록 그 효과가 크다. 또한 자외선의 양을 증가시키면 그 효과가 커져 지나친 양을 조사하면 세포에 치사작용을 나타낸다. 따라서 자외선에 의한 세포 밀도의 감소가 근섬유 형성의 저하를 초래하는 것으로 사료되어 이에 본 연구와 타 실험실에서 얻은 정보를 바탕으로 세포 융합 능력 감소의 원인에 대하여 토의하였다.

  • PDF

Development of Refolding Process to Obtain Active Recombinant Human Bone Morphogenetic Protein-2 and its Osteogenic Efficacy on Oral Stem Cells

  • Lee, Ji-Hye;Jang, Young-Joo
    • International Journal of Oral Biology
    • /
    • 제42권2호
    • /
    • pp.71-78
    • /
    • 2017
  • BMP-2 is a well-known TGF-beta related growth factor, having a significant role in bone and cartilage formation. It has been employed to promote bone formation in some clinical trials, and to differentiate mesenchymal stem cells into osteoblasts. However, it is difficult to obtain this protein in its soluble and active form. hBMP-2 is expressed as an inclusion body in the bacterial system. To continuously supply hBMP-2 for research, we optimized the refolding of recombinant hBMP-2 expressed in E. coli, and established an efficient method by using detergent and alkali. Using a heparin column, the recombinant hBMP-2 was purified with the correct refolding. Although combinatorial refolding remarkably enhanced the solubility of the inclusion body, a higher yield of active dimer form of hBMP-2 was obtained from one-step refolding with detergent. The refolded recombinant hBMP-2 induced alkaline phosphatase activity in mouse myoblasts, at $ED_{50}$ of 300-480ng/ml. Furthermore, the expressions of osteogenic markers were upregulated in hPDLSCs and hDPSCs. Therefore, using the process described in this study, the refolded hBMP-2 might be cost-effectively useful for various differentiation experiments in a laboratory.