• 제목/요약/키워드: Mycelial culture

검색결과 601건 처리시간 0.028초

Exopolysaccharide Production and Mycelial Growth in an Air-Lift Bioreactor Using Fomitopsis pinicola

  • Choi, Du-Bok;Maeng, Jeung-Moo;Ding, Ji-Lu;Cha, Wol-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1369-1378
    • /
    • 2007
  • For effective exopolysaccharide production and mycelial growth by a liquid culture of Fomitopsis pinicola in an air-lift bioreactor, the culture temperature, pH, carbon source, nitrogen source, and mineral source were initially investigated in a flask. The optimal temperature and pH for mycelial growth and exopolysaccharide production were $25^{\circ}C$ and 6.0, respectively. Among the various carbon sources tested, glucose was found to be the most suitable carbon source. In particular, the maximum mycelial growth and exopolysaccharide production were achieved in 4% glucose. The best nitrogen sources were yeast extract and malt extract. The optimal concentrations of yeast extract and malt extract were 0.5 and 0.1%, respectively. $K_2HPO_4\;and\;MgSO_4{\cdot}7H_2O$ were found to be the best mineral sources for mycelial growth and exopolysaccharide production. In order to investigate the effect of aeration on mycelial growth and exopolysaccharide production in an air-lift bioreactor, various aerations were tested for 8 days. The maximum mycelial growth and exopolysaccharide production were 7.9 g/l and 2.6 g/l, respectively, at 1.5 vvm of aeration. In addition, a batch culture in an air-lift bioreactor was carried out for 11 days under the optimal conditions. The maximum mycelial growth was 10.4 g/l, which was approximately 1.7-fold higher than that of basal medium. The exopolysaccharide production was increased with increased culture time. The maximum concentration of exopolysaccharide was 4.4 g/l, which was about 3.3-fold higher than that of basal medium. These results indicate that exopolysaccharide production increased in parallel with the growth of mycelium, and also show that product formation is associated with mycelial growth. The developed model in an air-lift bioreactor showed good agreement with experimental data and simulated results on mycelial growth and exopolysaccharide production in the culture of F. pinicola.

영지 액체 배양의 Wall Growth에 미치는 Polyacrylic Acid의 첨가 효과 (Effect of Polyacrylic Acid Addition on Wall Growth in Submerged Cultivation of Ganoderma lucidum)

  • 이신영;이학수
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.337-341
    • /
    • 2001
  • This study was carried out to screen the effective polymeric additives preventing wall growth during mycelial submerged cultivation of Ganoderma. lucidum. Effects of additives on mycelial growth and exo-polysaccharide (EPS) production in flask culture and jar fermenter system under 3 different pH processes were investigated, and changes of mycelial morphology were also examined. From flask culture of G. lucidum with additives of different concentrations, 0.1%(w/v) polyacrylic acid was effective for EPS production. As the polyacrylic acid of 0.1%(w/v) was added in medium, wall growth of G. lucidum mycelium grown in jar fermenter system could be protected. The addition of 0.1%(w/v) polyacrylic acid to medium was also improved the mycelial growth and EPS production in the later of submerged culture G. lucidum and no changes of mycelial morphology were observed.

  • PDF

Bottle Cultivation of Pleurotus ostreatus, Agrocybe aegerita and Ganoderma lucidum using Rice hull media

  • Lee, he-duck;Kim, hong-kyu;Kim, yong-gyun;Lee, ga-soon
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2001년도 춘계 학술발표대회
    • /
    • pp.44-46
    • /
    • 2001
  • Rice hull was used as a additive in order to find the effect for incresing of mushroom growth and yield in Chungnam Provincial techinical institution. 1 Treatment of 80% rice hull in small Neutaribeosut mycelial grow duration is shorter about 11 days and yield increased about 7% than conventional culture. 2. In case of Chongpung Neutaribeosut bottle culture, mycelial growth duration is shorter about two to three days in additive of 30 to 80% rice hull compared to conventional but yield similar to conventional. 3. Treatment of 30% rice hull in Agrocybe aegerita bottle culture, mycelial growth and yield increased 6days and 6% than convrntional, respectively 4 Treatment additived of 30% to 40% rice hull in Ganoderma lucidum bottle culture, similar to 454ays demand in mycelial grow duration and 38g yield/bottle in conventioal culture methods.

  • PDF

Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus

  • Lai, W.H.;Murni, M.J. Siti;Fauzi, D.;Mazni, O. Abas;Saleh, N.M.
    • Mycobiology
    • /
    • 제39권2호
    • /
    • pp.92-95
    • /
    • 2011
  • Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were $30^{\circ}C$ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media.

액체 홍국의 배양조건에 따른 색소생산과 색조의 변화 (Pigment Production and Color Diference of Liquid Beni-koji under Submerged Cultural Conditions)

  • 강성국;정순택
    • 한국미생물·생명공학회지
    • /
    • 제23권4호
    • /
    • pp.472-478
    • /
    • 1995
  • Mycelial growth, color difference and productivity of red pigment of beni-koji by Monascus anka KCCM 11832 were examined with respect to it's pigment in submerged culture with various medium and culture conditions. Shaking incubation was more promoted mycelial growth and the production of pigments than that for non-shaking incubation, and red color became ten times deeper. The production of red pigment was the highest when incubated at 25$\circ$C for 7 days in pH 6.0, but mycelial growth was showed the highest at 32.5$\circ$C. The levels of carbon and nitrogen source for maximum red pigment production were 2% rice powder and 0.05% peptone, respectively and the level of peptone for maximum pigment production was lower than that for maximum mycelial growth. Among pigmentation promoting agents tested, MgSO$_{4}$, was found to be suitable for the production of red pigment, and the optimum level was 0.1%.

  • PDF

Culture conditions for mycelial growth of Poria cocos

  • Jo, Woo-Sik;Park, Ju-Ri;Oh, So-Ra;Kang, Min-Gu;Kim, Woo-Hyun;Park, Seung-Chun
    • 한국버섯학회지
    • /
    • 제14권1호
    • /
    • pp.6-13
    • /
    • 2016
  • This study was carried out to determine the basic mycelial culture conditions for Poria cocos growth. According to colony diameter and mycelial density, suitable media for mycelial growth were Malt yeast extract, Potato dextrose agar, Yeast extract agar, and Yeast malt agar. The optimum temperature for mycelial growth was between 25 and $35^{\circ}C$, and the optimum pH value was between 4 and 7. Carbon and nitrogen sources were fructose and yeast extract. The optimum C/N ratio was about 10 to 1 with 2% glucose. Other minor components for optimal growth were thiamine-HCl and nicotinamide as vitamins, acetic and lactic acid as organic acids, and $MgSO_4{\cdot}7H_2O$ and $FeSO_4{\cdot}7H_2O$ as mineral salts.

The culture conditions for the mycelial growth of Auricularia auricula-judae

  • Jo, Woo-Sik;Kim, Dong-Geun;Seok, Soon-Ja;Jung, Hee-Young;Park, Seung-Chun
    • 한국버섯학회지
    • /
    • 제12권2호
    • /
    • pp.88-95
    • /
    • 2014
  • Auricularia auricula-judae is an edible mushroom, which is known as wood ear, free ear, black ear mushroom, and free jelly fish. This study was carried out to obtain the basic information for mycelial culture conditions of Auricularia auriculajudae. According to colony diameter and mycelial density, the media for suitable mycelial growth were PDA and MCM. The optimum temperature for mycelial growth was $25{\sim}30^{\circ}C$. Carbon and nitrogen sources were mannose and malt extract, respectively. The optimum C/N ratio was in the range of 10 to 1 with 2% glucose. Other minor components for the optimal growth were thiamine-HCl and biotin as vitamins, succinic acid and lactic acid as organic acids, and $MgSO_4{\cdot}7H_2O$ and $KH_2PO_4$ as mineral salts.

표고버섯 균사체의 배양특성 및 Pilot Scale 생산 (Cultural Characteristics and Pilot Scale Fermentation for the Submerged Mycelial Culture of Lentinus dfodes)

  • 이병우;임근형;박기문;손태화;김동욱;손세형
    • 한국미생물·생명공학회지
    • /
    • 제21권6호
    • /
    • pp.609-614
    • /
    • 1993
  • The optimum conditions for the submerged mycelial culture of Lentinus edodes SR-1 were elucidated to be incubation temperature of 25C, initial pH 4.0, agitation of 300 rpm, inoculation of 10.0%(v/v), and aeration of 1.0 v/v/m in TGY medium. The optimum c/n ratio and economic yield coeffcient for the submerged mycelial culture were 13.1:1 and 0.45 respectively. As the plant growth hormones test, SCM medium containing 0.5ppm of 2,4-dicholorophenoxyacetic acid increased mycelial yield in 1.1%, but 6-benzylaminopurine was not effective.

  • PDF

영지의 액체배양 중 균사형태에 미치는 통기.교반의 영향 및 Scale-up (Effect of Agitation, Aeration and Scale-up on Mycelial Morphology During Liquid Culture of Ganoderma lucidum)

  • 이학수;이기영;최상윤;이신영
    • KSBB Journal
    • /
    • 제26권4호
    • /
    • pp.357-364
    • /
    • 2011
  • This study was carried out to investigate the effects of agitation, aeration and scale-up on the mycelial growth, exo-polysaccharide (EPS) production, and mycelial morphology in the liquid culture of Ganoderma lucidum. A correlation between roughness and operating variables was also studied to scale-up the liquid culture of G. lucidum in a jar fermenter. When the agitation speed or aeration rate increased, the morphological form was changed from rough pellet to smooth pellet form. Increase of the agitation and aeration reduced the mycelial roughness. On the other hand, in the case of pellet size, it was not affected by aeration. The higher EPS production was obtained at approximately 17% of roughness and mycelial pellet size of 3~5 mm. The morphology at each fermenter was closely correlated with kLa value, and it was found that similarity of morphology would be used as a criteria of scale-up for liquid culture of G. lucidum.

Observations on Some of the Mycelial Growth and Pigmentation Characteristics of Cordyceps militaris Isolates

  • Shrestha, Bhushan;Lee, Won-Ho;Han, Sang-Kuk;Sung, Jae-Mo
    • Mycobiology
    • /
    • 제34권2호
    • /
    • pp.83-91
    • /
    • 2006
  • Characteristic growth patterns of Cordyceps militaris isolates on various media, under varying light conditions and at varying incubation periods were examined. Light was found to be the most critical single factor in determining the density, texture, and pigmentation of the mycelial culture of the fungus. However, under the light condition, the degree of pigmentation and mycelial density were found to be affected by the incubation period and type of medium. Irrespective of the variations in medium type or incubation period, there was no pigmentation of the mycelium under dark condition. Radial growth of the mycelium was faster under dark incubation rather than under light incubation. Abundant mycelial density and darkest pigmentation of C. militaris isolates were produced in nutritionally rich media like SDAY, SMAY and CZYA, suggesting that these media may fulfill all the requirements for vegetative growth of the fungus. Growth characteristics of C. militaris isolates could be easily observed by the simple agar culture method, which would be useful to characterize the phenotypic characteristics of large number of pure cultures of the fungus under given conditions of growth factors such as medium, light and temperature.