The face recognition has been used in a variety fields, such as identification and security. The procedure of the face recognition is as follows; extracting face features of face images, learning the extracted face features, and selecting some features among all extracted face features. The selected features have discrimination and are used for face recognition. However, there are numerous face features extracted from face images. If a face recognition system uses all extracted features, a high computing time is required for learning face features and the efficiency of computing resources decreases. To solve this problem, many researchers have proposed various Boosting methods, which improve the performance of learning algorithms. Mutual-Boost is the typical Boosting method and efficiently selects face features by using mutual information between two features. In this paper, we propose a GroupMutual-Boost method for improving Mutual-Boost. Our proposed method can shorten the time required for learning and recognizing face features and use computing resources more effectively since the method does not learn individual features but a feature group.
The purpose of this study is to investigate determinants of partner opportunism in Korean discount store distribution channels. In addition, this study also try to examine moderating role of relational learning in the relationship. This study deals with transaction specific investment asymmetry, mutual hostages, payoff inequity, cultural diversity, and goal incompatibilities as determinants of partner opportunism. For empirical testing, 293 respondents of suppliers of discount store in Korea were surveyed and the analysis utilizing partial least square model indicated that TSI asymmetry, payoff inequity, and goal incompatibilities had positive effects on partner opportunism. On the other hand, mutual hostages had negative effect on partner opportunism. In addition, relational learning had moderating effect on the relationship between TSI asymmetry, mutual hostages, and payoff inequity and partner opportunism.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.5
no.6
/
pp.317-325
/
2015
The aim of this research was to investigate the relationship among team learning behavior, individual creativity, team shared mental model(TSMM), mutual performance monitoring on team creativity and then providing the fundamental data on the education. Also it intended to acknowledge relative predictive power on team creativity of independent variables. The total of 257 college students participated the team learning for 6 weeks in a semester. Pearson's product moment correlation and regression analysis were used for data analysis and testing of significance of verification, The main research results are summarized as follows; team learning behavior, TSMM, mutual performance monitoring had no significant effects on three subfactors of team creativity such as novelty, resolution, elaboration & synthesis. Therefore followed researches are needed about inter and intra processing of team creativity.
International Journal of Computer Science & Network Security
/
v.24
no.6
/
pp.1-7
/
2024
Comparing text features involves evaluating the "similarity" between texts. It is crucial to use appropriate similarity measures when comparing similarities. This study utilized various techniques to assess the similarities between newspaper articles, including deep learning and a previously proposed method: a combination of Pointwise Mutual Information (PMI) and Word Pair Matching (WPM), denoted as PMI+WPM. For performance comparison, law data from medical research in Japan were utilized as validation data in evaluating the PMI+WPM method. The distribution of similarities in text data varies depending on the evaluation technique and genre, as revealed by the comparative analysis. For newspaper data, non-deep learning methods demonstrated better similarity evaluation accuracy than deep learning methods. Additionally, evaluating similarities in law data is more challenging than in newspaper articles. Despite deep learning being the prevalent method for evaluating textual similarities, this study demonstrates that non-deep learning methods can be effective regarding Japanese-based texts.
Relationships between students' perception of psychological distance with online professors and their academic learning achievement and their intention to continue online learning were examined. The courses selected for this study are two online courses: 1) 'English Grammar' and 2) 'TOEIC (Test of English for International Communication) Preparation' offered by a campus-based, medium-sized university. This study employed a mixed-methods approach by conducting a survey as well as one-on-one interviews with students. Students who feel psychologically distant with the online professors show significantly lower degree of perceived learning achievement, and higher tendency not to take online courses any more. All the three scales measuring the psychological distance -mutual awareness, connectedness, and availability- with professors turned out to be significantly related with students' perceived learning achievement. According to the result of the interview data analysis, the student interviewees unanimously said that the university should limit the number of online courses that students can register in a semester to one or two courses. Most students regard low interactivity of online learning as inevitable phenomenon. There is a statistically significant difference in perceived learning achievement between the online preferred group and the offline preferred group. Also, there is a significant difference in connectedness and availability and no significant difference in the degree of mutual awareness between the online and the offline preferred group.
Communications for Statistical Applications and Methods
/
v.12
no.3
/
pp.659-672
/
2005
This paper evaluates discretization of continuous variables to select relevant variables for supervised learning using mutual information. Three discretization methods, MDL, Histogram and 4-Intervals are considered. The process of discretization and variable subset selection is evaluated according to the classification accuracies with the 6 real data sets of UCI databases. Results show that 4-Interval discretization method based on quantiles, is robust and efficient for variable selection process. We also visually evaluate the appropriateness of the selected subset of variables.
Chu, Han-Gyeong;Shin, Han-Sol;Ahn, Ki-Uhn;Ra, Seon-Jung;Park, Cheol Soo
Journal of the Architectural Institute of Korea Structure & Construction
/
v.34
no.6
/
pp.63-69
/
2018
The machine learning model can capture the dynamics of building systems with less inputs than the first principle based simulation model. The training data for developing a machine learning model are usually selected in a heuristic manner. In this study, the authors developed a machine learning model which can describe supply air temperature from an AHU in a real office building. For rational reduction of the training data, the progressive sampling method was used. It is found that even though the progressive sampling requires far less training data (n=60) than the offline regular sampling (n=1,799), the MBEs of both models are similar (2.6% vs. 5.4%). In addition, for the update of the machine learning model, the normalized mutual information (NMI) was applied. If the NMI between the simulation output and the measured data is less than 0.2, the model has to be updated. By the use of the NMI, the model can perform better prediction ($5.4%{\rightarrow}1.3%$).
International Journal of Advanced Culture Technology
/
v.8
no.1
/
pp.44-55
/
2020
The degree of mutual understanding between nursing students and instructors regarding simulation-based education remains unknown. The purpose of this study was to identify the subjectivity of nursing students and instructors about simulation-based learning, and was intended to expand the mutual understand by employing the co-orientation model. Q-methodology was used to identify the perspectives of 46 nursing students and 38 instructors. Perception types found among students in relation to simulation-based learning were developmental training seekers, instructor-dependent seekers, and learning achievement seekers. The instructors estimated the student perception types as passive and dependent, positive commitment, demanding role as facilitators, and psychological burden. Perception types found among instructors included nursing capacity enhancement seekers, self-reflection seekers, and reality seekers. The students classified the instructors' perception types as nursing competency seekers, learning reinforcement seekers, and debriefing-oriented seekers. As a result of the analysis of these relations in the co-orientation model, instructors identified psychological burden and passive and dependent cognitive frameworks among students; however, these were not reported in the students' perspectives. Likewise, the reality seekers type found among the perception types of instructors was not identified by the students. These findings can help develop and implement simulation-based curricula aimed at maximizing the learning effect of nursing students.
Journal of the Institute of Convergence Signal Processing
/
v.23
no.3
/
pp.160-165
/
2022
Mutual distillation is a knowledge distillation method that guides a cohort of neural networks to learn cooperatively by transferring knowledge between them, without the help of a teacher network. This paper aims to confirm whether mutual distillation is also applicable to super-resolution networks. To this regard, we conduct experiments to apply mutual distillation to the discriminators of SRGANs and analyze the effect of mutual distillation on improving SRGAN's performance. As a result of the experiment, it was confirmed that SRGANs whose discriminators shared their knowledge through mutual distillation can produce super-resolution images enhanced in both quantitative and qualitative qualities.
With the development of the sharing economy, existing recommender services are changing from user-item recommendations to user-user recommendations. The most important consideration is that all users should have the best possible satisfaction. To achieve this outcome, the matching service adds information between users and items necessary for the existing recommender service and information between users, so higher-level data mining is required. To this end, this paper proposes a user-to-user matching service (UTU-MS) employing the prediction of mutual satisfaction based on learning. Users were divided into consumers and suppliers, and the properties considered for recommendations were set by filtering and weighting. Based on this process, we implemented a convolutional neural network (CNN)-deep neural network (DNN)-based model that can predict each supplier's satisfaction from the consumer perspective and each consumer's satisfaction from the supplier perspective. After deriving the final mutual satisfaction using the predicted satisfaction, a top recommendation list is recommended to all users. The proposed model was applied to match guests with hosts using Airbnb data, which is a representative sharing economy platform. The proposed model is meaningful in that it has been optimized for the sharing economy and recommendations that reflect user-specific priorities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.